IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43163-9.html
   My bibliography  Save this article

Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery

Author

Listed:
  • Yuqing Chen

    (Hunan University)

  • Qiu He

    (Sichuan University)

  • Yun Zhao

    (Tsinghua University)

  • Wang Zhou

    (Hunan University)

  • Peitao Xiao

    (National University of Defense Technology)

  • Peng Gao

    (Hunan University)

  • Naser Tavajohi

    (Umeå University)

  • Jian Tu

    (LI-FUN Technology Corporation Limited)

  • Baohua Li

    (Tsinghua University)

  • Xiangming He

    (Tsinghua University)

  • Lidan Xing

    (South China Normal University)

  • Xiulin Fan

    (Zhejiang University)

  • Jilei Liu

    (Hunan University)

Abstract

Low temperatures severely impair the performance of lithium-ion batteries, which demand powerful electrolytes with wide liquidity ranges, facilitated ion diffusion, and lower desolvation energy. The keys lie in establishing mild interactions between Li+ and solvent molecules internally, which are hard to achieve in commercial ethylene-carbonate based electrolytes. Herein, we tailor the solvation structure with low-ε solvent-dominated coordination, and unlock ethylene-carbonate via electronegativity regulation of carbonyl oxygen. The modified electrolyte exhibits high ion conductivity (1.46 mS·cm−1) at −90 °C, and remains liquid at −110 °C. Consequently, 4.5 V graphite-based pouch cells achieve ~98% capacity over 200 cycles at −10 °C without lithium dendrite. These cells also retain ~60% of their room-temperature discharge capacity at −70 °C, and miraculously retain discharge functionality even at ~−100 °C after being fully charged at 25 °C. This strategy of disrupting solvation dominance of ethylene-carbonate through molecular charge engineering, opens new avenues for advanced electrolyte design.

Suggested Citation

  • Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43163-9
    DOI: 10.1038/s41467-023-43163-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43163-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43163-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jijian Xu & Jiaxun Zhang & Travis P. Pollard & Qingdong Li & Sha Tan & Singyuk Hou & Hongli Wan & Fu Chen & Huixin He & Enyuan Hu & Kang Xu & Xiao-Qing Yang & Oleg Borodin & Chunsheng Wang, 2023. "Electrolyte design for Li-ion batteries under extreme operating conditions," Nature, Nature, vol. 614(7949), pages 694-700, February.
    2. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    3. Marco-Tulio F. Rodrigues & Ganguli Babu & Hemtej Gullapalli & Kaushik Kalaga & Farheen N. Sayed & Keiko Kato & Jarin Joyner & Pulickel M. Ajayan, 2017. "A materials perspective on Li-ion batteries at extreme temperatures," Nature Energy, Nature, vol. 2(8), pages 1-14, August.
    4. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    5. Yan Jin & Phung M. L. Le & Peiyuan Gao & Yaobin Xu & Biwei Xiao & Mark H. Engelhard & Xia Cao & Thanh D. Vo & Jiangtao Hu & Lirong Zhong & Bethany E. Matthews & Ran Yi & Chongmin Wang & Xiaolin Li & J, 2022. "Low-solvation electrolytes for high-voltage sodium-ion batteries," Nature Energy, Nature, vol. 7(8), pages 718-725, August.
    6. Weijiang Xue & Mingjun Huang & Yutao Li & Yun Guang Zhu & Rui Gao & Xianghui Xiao & Wenxu Zhang & Sipei Li & Guiyin Xu & Yang Yu & Peng Li & Jeffrey Lopez & Daiwei Yu & Yanhao Dong & Weiwei Fan & Zhe , 2021. "Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte," Nature Energy, Nature, vol. 6(5), pages 495-505, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    2. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    3. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    4. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    5. Zhiguo Tang & Anqi Song & Shoucheng Wang & Jianping Cheng & Changfa Tao, 2020. "Numerical Analysis of Heat Transfer Mechanism of Thermal Runaway Propagation for Cylindrical Lithium-ion Cells in Battery Module," Energies, MDPI, vol. 13(4), pages 1-18, February.
    6. Qin, Peng & Jia, Zhuangzhuang & Wu, Jingyun & Jin, Kaiqiang & Duan, Qiangling & Jiang, Lihua & Sun, Jinhua & Ding, Jinghu & Shi, Cheng & Wang, Qingsong, 2022. "The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes," Applied Energy, Elsevier, vol. 313(C).
    7. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    8. Zheng Li & Harsha Rao & Rasha Atwi & Bhuvaneswari M. Sivakumar & Bharat Gwalani & Scott Gray & Kee Sung Han & Thomas A. Everett & Tanvi A. Ajantiwalay & Vijayakumar Murugesan & Nav Nidhi Rajput & Vila, 2023. "Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    11. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    12. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    13. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    14. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    16. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    17. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    18. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    19. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    20. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43163-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.