IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61942-4.html
   My bibliography  Save this article

γ-Ray irradiated polyacrylamide networks enable high-performance Li||S pouch cells

Author

Listed:
  • Zhijuan Zou

    (Southwest University of Science and Technology)

  • Pengfei Liu

    (China Academy of Engineering Physics)

  • Ruiyang Dou

    (China Academy of Engineering Physics)

  • Kaijun Liu

    (Chongqing University)

  • Yunlong Wang

    (Nanjing University of Aeronautics and Astronautics)

  • Lixian Song

    (Southwest University of Science and Technology)

  • Liping Tong

    (Southwest University of Science and Technology)

  • Guolu Yin

    (Chongqing University)

  • Wenbin Kang

    (Southwest University of Science and Technology)

  • Wenlong Cai

    (Sichuan University)

  • Yaping Zhang

    (Southwest University of Science and Technology)

  • Hongbing Chen

    (China Academy of Engineering Physics)

  • Yingze Song

    (Southwest University of Science and Technology)

Abstract

Binders are essential for maintaining positive electrode integrity in Li||S batteries and significantly affect their performance. However, commercial linear binders often have disordered networks, poor binding efficiency, and insufficient mechanical strength. To address these challenges, three-dimensional covalent binders offer a promising solution. Traditional methods for producing cross-linked binders require additives and result in poorly controlled polymer networks due to the stochastic nature of liquid-phase polymerization. Moreover, the mechanisms by which reticulated binders stabilize the positive electrode remain unclear, requiring investigation under operando conditions. Herein, we present an approach to tailor cross-linked polyacrylamide networks using solid-state operando γ-ray irradiation chemistry, which eliminates additives and produces a pure, ordered network with remarkable binding capabilities. By integrating in situ high-resolution optical frequency domain reflectometry, multiscale synchrotron radiation characterization, and virtual simulations, this study reveals the role of binders in dynamically encaging and confining sulfur. Specifically, γ-ray-enabled polyacrylamide networks enhance battery performance through mechanical strengthening, optimized sulfur regeneration, and improved re-occupancy. Consequently, the well-designed composite positive electrode structure with only 5.0 wt% binder improves soft-packaged Li||S battery performance across various scenarios. Notably, a 1.2-Ah pouch cell achieves 410.1 Wh kg−1 specific energy with a low electrolyte/sulfur ratio of 3.0 µL mg–1.

Suggested Citation

  • Zhijuan Zou & Pengfei Liu & Ruiyang Dou & Kaijun Liu & Yunlong Wang & Lixian Song & Liping Tong & Guolu Yin & Wenbin Kang & Wenlong Cai & Yaping Zhang & Hongbing Chen & Yingze Song, 2025. "γ-Ray irradiated polyacrylamide networks enable high-performance Li||S pouch cells," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61942-4
    DOI: 10.1038/s41467-025-61942-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61942-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61942-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenxin Mei & Zhi Liu & Chengdong Wang & Chuang Wu & Yubin Liu & Pengjie Liu & Xudong Xia & Xiaobin Xue & Xile Han & Jinhua Sun & Gaozhi Xiao & Hwa-yaw Tam & Jacques Albert & Qingsong Wang & Tuan Guo, 2023. "Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shiyuan Zhou & Jie Shi & Sangui Liu & Gen Li & Fei Pei & Youhu Chen & Junxian Deng & Qizheng Zheng & Jiayi Li & Chen Zhao & Inhui Hwang & Cheng-Jun Sun & Yuzi Liu & Yu Deng & Ling Huang & Yu Qiao & Gu, 2023. "Visualizing interfacial collective reaction behaviour of Li–S batteries," Nature, Nature, vol. 621(7977), pages 75-81, September.
    3. Rongli Liu & Ziyang Wei & Lele Peng & Leyuan Zhang & Arava Zohar & Rachel Schoeppner & Peiqi Wang & Chengzhang Wan & Dan Zhu & Haotian Liu & Zhaozong Wang & Sarah H. Tolbert & Bruce Dunn & Yu Huang & , 2024. "Establishing reaction networks in the 16-electron sulfur reduction reaction," Nature, Nature, vol. 626(7997), pages 98-104, February.
    4. Qin Yang & Jinyan Cai & Guanwu Li & Runhua Gao & Zhiyuan Han & Jingjing Han & Dong Liu & Lixian Song & Zixiong Shi & Dong Wang & Gongming Wang & Weitao Zheng & Guangmin Zhou & Yingze Song, 2024. "Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium–sulfur reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Juhwan Lim & Jung-In Lee & Ye Wang & Nicolas Gauriot & Ebin Sebastian & Manish Chhowalla & Christoph Schnedermann & Akshay Rao, 2024. "Photoredox phase engineering of transition metal dichalcogenides," Nature, Nature, vol. 633(8028), pages 83-89, September.
    6. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanqing Song & Zhenzhuang Wen & Xin Wang & Kunyan Qian & Tao Zhang & Haozhi Wang & Jia Ding & Wenbin Hu, 2025. "Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Wanyuan Jiang & Xin Jin & Borui Li & Yunpeng Qu & Lin Wang & Ce Song & Mengfan Pei & Tianpeng Zhang & Xigao Jian & Fangyuan Hu, 2025. "Wide temperature range adaptable electric field driven binder for advanced lithium-sulfur batteries," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Ruilin Bai & Yu Yao & Qiaosong Lin & Lize Wu & Zhen Li & Huijuan Wang & Mingze Ma & Di Mu & Lingxiang Hu & Hai Yang & Weihan Li & Shaolong Zhu & Xiaojun Wu & Xianhong Rui & Yan Yu, 2025. "Preferable single-atom catalysts enabled by natural language processing for high energy density Na-S batteries," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    5. Yang, Lanyong & Zhu, Yongguang & Li, Junhui & Dou, Shiquan & Liu, Gang & Xu, Deyi, 2025. "The midstream amplifier: Risk spillovers in China's lithium supply chain from mining to batteries," Journal of Commodity Markets, Elsevier, vol. 38(C).
    6. Rodríguez-Iturriaga, Pablo & Valdés, Enrique Ernesto & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & Anseán, David & López-Villanueva, Juan Antonio, 2025. "Efficient high-fidelity modeling of a nickel-rich silicon-graphite cell enabled by optimal spatial distribution," Applied Energy, Elsevier, vol. 389(C).
    7. Huang, Jianhua & Zhu, Guoqing & Guo, Dongliang & Huang, Jia & Xiao, Peng & Liu, Tong, 2025. "Study on the extreme early warning method of thermal runaway utilizing li-ion battery strain," Applied Energy, Elsevier, vol. 384(C).
    8. Ji Hwan Kim & Mihyun Kim & Seong-Jun Kim & Shin-Yeong Kim & Seungho Yu & Wonchan Hwang & Eunji Kwon & Jae-Hong Lim & So Hee Kim & Yung-Eun Sung & Seung-Ho Yu, 2024. "Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Jin, Chengwei & Xu, Jun & Jia, Zhenyu & Xie, Yanmin & Zhang, Xianggong & Mei, Xuesong, 2024. "Expansion force signal based rapid detection of early thermal runaway for pouch batteries," Energy, Elsevier, vol. 312(C).
    10. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Imanol Landa-Medrano & Idoia Urdampilleta & Iker Castrillo & Hans-Jürgen Grande & Iratxe de Meatza & Aitor Eguia-Barrio, 2024. "Making Room for Silicon: Including SiO x in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cells," Energies, MDPI, vol. 17(7), pages 1-21, March.
    13. Fangcai Zheng & Yuhang Zhang & Zhiqiang Li & Ge Yao & Lingzhi Wei & Changlai Wang & Qianwang Chen & Hui Wang, 2025. "Axial ligand induces the charge localization of Ca single-atom sites for efficient Na–S batteries," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Zhang, Zike & Zhao, Wenjie & Ma, Yuechao & Yao, Yuan & Yu, Taolin & Zhang, Wei & Guo, Hongquan & Duan, Xiaoyang & Yan, Ruitian & Xu, Dan & Chen, Minghua, 2025. "A flexible integrated temperature-pressure sensor for wearable detection of thermal runaway in lithium batteries," Applied Energy, Elsevier, vol. 381(C).
    15. repec:cdl:itsdav:qt5zx1k22k is not listed on IDEAS
    16. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    17. Fleming, Maxwell & Kannan, Sangita Gayatri & Eggert, Roderick, 2024. "Long-run availability of mineral resources: The dynamic case of lithium," Resources Policy, Elsevier, vol. 97(C).
    18. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Shobhan Dhir & Ben Jagger & Alen Maguire & Mauro Pasta, 2023. "Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Wonmi Lee & Juho Lee & Taegyun Yu & Hyeong-Jong Kim & Min Kyung Kim & Sungbin Jang & Juhee Kim & Yu-Jin Han & Sunghun Choi & Sinho Choi & Tae-Hee Kim & Sang-Hoon Park & Wooyoung Jin & Gyujin Song & Do, 2024. "Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    21. Daiwei Wang & Li-Ji Jhang & Rong Kou & Meng Liao & Shiyao Zheng & Heng Jiang & Pei Shi & Guo-Xing Li & Kui Meng & Donghai Wang, 2023. "Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61942-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.