IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58114-9.html
   My bibliography  Save this article

Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries

Author

Listed:
  • Wanqing Song

    (Tianjin University
    Tianjin University)

  • Zhenzhuang Wen

    (Tianjin University)

  • Xin Wang

    (Tianjin University)

  • Kunyan Qian

    (Tianjin University)

  • Tao Zhang

    (Tianjin University)

  • Haozhi Wang

    (Tianjin University
    Hainan University)

  • Jia Ding

    (Tianjin University
    Tianjin University
    Tianjin University)

  • Wenbin Hu

    (Tianjin University
    Tianjin University
    Tianjin University)

Abstract

Sodium | |sulfur batteries hold great promise for grid-scale energy storage, yet their performance is hindered by the shuttling and sluggish redox of sulfur species. Herein, we report a strategic design of sulfur hosts modified with coordinatively unsaturated iron single-atom (Fe‒Nx) for sodium | |sulfur batteries. Utilizing theoretical calculations, geometric descriptor γ (lNa‒S/lFe‒N) and electronic descriptor φ (eg /t2g) simultaneously correlated with the unsaturation degree of Fe‒Nx site are proposed. A negative correlation between γ and the adsorption strength of sodium polysulfides, along with a positive correlation between φ and the decomposition capability of Na2S are established. The Fe‒N1 sites, with the minimum γ and maximum φ values, are identified as the optimal functional species for optimizing polysulfides behaviors. Sodium | |sulfur batteries utilizing Fe‒N1 /S positive electrodes deliver improved sulfur utilization (81.4% at 167.5 mA g‒1), sustained rate performance (1003.0 mAh g‒1 at 1675 mA g‒1), and stable cycling (83.5% retention over 450 cycles at 3350 mA g‒1). Moreover, Fe‒N1/S positive electrodes enable sodium | |sulfur pouch cells to deliver a sulfur utilization of 77.4% (1296.9 mAh g‒1) at 0.1 A g‒1. Our work offers a strategy for designing high-activity, fast redox sulfur positive electrodes and validates the practical potential of sodium | |sulfur batteries.

Suggested Citation

  • Wanqing Song & Zhenzhuang Wen & Xin Wang & Kunyan Qian & Tao Zhang & Haozhi Wang & Jia Ding & Wenbin Hu, 2025. "Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58114-9
    DOI: 10.1038/s41467-025-58114-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58114-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58114-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianbin Zhou & Manas Likhit Holekevi Chandrappa & Sha Tan & Shen Wang & Chaoshan Wu & Howie Nguyen & Canhui Wang & Haodong Liu & Sicen Yu & Quin R. S. Miller & Gayea Hyun & John Holoubek & Junghwa Hon, 2024. "Healable and conductive sulfur iodide for solid-state Li–S batteries," Nature, Nature, vol. 627(8003), pages 301-305, March.
    2. Jiarui He & Amruth Bhargav & Laisuo Su & Harry Charalambous & Arumugam Manthiram, 2023. "Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shuya Wei & Shaomao Xu & Akanksha Agrawral & Snehashis Choudhury & Yingying Lu & Zhengyuan Tu & Lin Ma & Lynden A. Archer, 2016. "A stable room-temperature sodium–sulfur battery," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    4. Quan Pang & Xiao Liang & Chun Yuen Kwok & Linda F. Nazar, 2016. "Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes," Nature Energy, Nature, vol. 1(9), pages 1-11, September.
    5. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Guangmin Zhou & Hao Chen & Yi Cui, 2022. "Formulating energy density for designing practical lithium–sulfur batteries," Nature Energy, Nature, vol. 7(4), pages 312-319, April.
    7. Rongli Liu & Ziyang Wei & Lele Peng & Leyuan Zhang & Arava Zohar & Rachel Schoeppner & Peiqi Wang & Chengzhang Wan & Dan Zhu & Haotian Liu & Zhaozong Wang & Sarah H. Tolbert & Bruce Dunn & Yu Huang & , 2024. "Establishing reaction networks in the 16-electron sulfur reduction reaction," Nature, Nature, vol. 626(7997), pages 98-104, February.
    8. Chao Ye & Huanyu Jin & Jieqiong Shan & Yan Jiao & Huan Li & Qinfen Gu & Kenneth Davey & Haihui Wang & Shi-Zhang Qiao, 2021. "A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Wanqing Song & Xinyi Yang & Tao Zhang & Zechuan Huang & Haozhi Wang & Jie Sun & Yunhua Xu & Jia Ding & Wenbin Hu, 2024. "Optimizing potassium polysulfides for high performance potassium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Xin Chen & Linfeng Peng & Lihui Wang & Jiaqiang Yang & Zhangxiang Hao & Jingwei Xiang & Kai Yuan & Yunhui Huang & Bin Shan & Lixia Yuan & Jia Xie, 2019. "Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    11. Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Shiyuan Zhou & Jie Shi & Sangui Liu & Gen Li & Fei Pei & Youhu Chen & Junxian Deng & Qizheng Zheng & Jiayi Li & Chen Zhao & Inhui Hwang & Cheng-Jun Sun & Yuzi Liu & Yu Deng & Ling Huang & Yu Qiao & Gu, 2023. "Visualizing interfacial collective reaction behaviour of Li–S batteries," Nature, Nature, vol. 621(7977), pages 75-81, September.
    13. Huilin Pan & Junzheng Chen & Ruiguo Cao & Vijay Murugesan & Nav Nidhi Rajput & Kee Sung Han & Kristin Persson & Luis Estevez & Mark H. Engelhard & Ji-Guang Zhang & Karl T. Mueller & Yi Cui & Yuyan Sha, 2017. "Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth," Nature Energy, Nature, vol. 2(10), pages 813-820, October.
    14. Muhammad Kashif Aslam & Ieuan D. Seymour & Naman Katyal & Sha Li & Tingting Yang & Shu-juan Bao & Graeme Henkelman & Maowen Xu, 2020. "Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    15. Bin-Wei Zhang & Tian Sheng & Yun-Dan Liu & Yun-Xiao Wang & Lei Zhang & Wei-Hong Lai & Li Wang & Jianping Yang & Qin-Fen Gu & Shu-Lei Chou & Hua-Kun Liu & Shi-Xue Dou, 2018. "Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    16. Zichao Yan & Jin Xiao & Weihong Lai & Li Wang & Florian Gebert & Yunxiao Wang & Qinfen Gu & Hui Liu & Shu-Lei Chou & Huakun Liu & Shi-Xue Dou, 2019. "Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    17. Haifeng Qi & Ji Yang & Fei Liu & LeiLei Zhang & Jingyi Yang & Xiaoyan Liu & Lin Li & Yang Su & Yuefeng Liu & Rui Hao & Aiqin Wang & Tao Zhang, 2021. "Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Chao Ye & Huan Li & Yujie Chen & Junnan Hao & Jiahao Liu & Jieqiong Shan & Shi-Zhang Qiao, 2024. "The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    2. Chao Ye & Huanyu Jin & Jieqiong Shan & Yan Jiao & Huan Li & Qinfen Gu & Kenneth Davey & Haihui Wang & Shi-Zhang Qiao, 2021. "A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yuruo Qi & Qing-Jie Li & Yuanke Wu & Shu-juan Bao & Changming Li & Yuming Chen & Guoxiu Wang & Maowen Xu, 2021. "A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Liu, Ying & Lee, Dong Jun & Ahn, Hyo-Jun & Nam, Sang Yong & Cho, Kwon-Koo & Ahn, Jou-Hyeon, 2023. "Waste coffee grounds-derived carbon: Nanoarchitectured pore-structure regulation for sustainable room-temperature sodium–sulfur batteries," Renewable Energy, Elsevier, vol. 212(C), pages 865-874.
    5. Fu Liu & Wenqing Lu & Jiaqiang Huang & Vanessa Pimenta & Steven Boles & Rezan Demir-Cakan & Jean-Marie Tarascon, 2023. "Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xiongwei Zhong & Xiao Xiao & Qizhen Li & Mengtian Zhang & Zhitong Li & Leyi Gao & Biao Chen & Zhiyang Zheng & Qingjin Fu & Xingzhu Wang & Guangmin Zhou & Baomin Xu, 2024. "Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Miao, Kaijie & Ma, Chengwei & Zhou, Jiangqi, 2025. "Advances and prospects of low temperature LiS batteries," Applied Energy, Elsevier, vol. 388(C).
    9. Chao Ye & Huan Li & Yujie Chen & Junnan Hao & Jiahao Liu & Jieqiong Shan & Shi-Zhang Qiao, 2024. "The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zhu, Renlin & Huang, Run & Lv, Xiaodong & Zhang, Shudong & Lin, Yibo & Xie, Jiayue & Long, Xianze & Li, Miao, 2025. "A systematical review on preparation, microstructure, cyclic parameters, and anchoring NaPSs of cathodes containing electrocatalysts for room-temperature sodium‑sulfur batteries," Applied Energy, Elsevier, vol. 381(C).
    11. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Ji Hwan Kim & Mihyun Kim & Seong-Jun Kim & Shin-Yeong Kim & Seungho Yu & Wonchan Hwang & Eunji Kwon & Jae-Hong Lim & So Hee Kim & Yung-Eun Sung & Seung-Ho Yu, 2024. "Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Siwu Li & Haolin Zhu & Yuan Liu & Zhilong Han & Linfeng Peng & Shuping Li & Chuang Yu & Shijie Cheng & Jia Xie, 2022. "Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Fangcai Zheng & Yuhang Zhang & Zhiqiang Li & Ge Yao & Lingzhi Wei & Changlai Wang & Qianwang Chen & Hui Wang, 2025. "Axial ligand induces the charge localization of Ca single-atom sites for efficient Na–S batteries," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Burke, Andrew F. & Zhao, Jingyuan, 2025. "Advanced Battery Technologies: Bus, Heavy-Duty Vocational Truck, and Construction Machinery Applications," Institute of Transportation Studies, Working Paper Series qt5zx1k22k, Institute of Transportation Studies, UC Davis.
    16. Haifeng Qi & Yurou Li & Zhitong Zhou & Yueqiang Cao & Fei Liu & Weixiang Guan & Leilei Zhang & Xiaoyan Liu & Lin Li & Yang Su & Kathrin Junge & Xuezhi Duan & Matthias Beller & Aiqin Wang & Tao Zhang, 2023. "Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Navinkumar, T.M. & Bharatiraja, C., 2025. "Sustainable hydrogen energy fuel cell electric vehicles: A critical review of system components and innovative development recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    18. Haifeng Qi & Yueyue Jiao & Jianglin Duan & Nicholas F. Dummer & Bin Zhang & Yujing Ren & Stuart H. Taylor & Yong Qin & Kathrin Junge & Haijun Jiao & Graham J. Hutchings & Matthias Beller, 2025. "Tandem reductive amination and deuteration over a phosphorus-modified iron center," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Dahai Yang & Xingyu Zhang & Ruijie Yang & Bolin Zou & Rui Huang & Colin Ophus & Chengyu Song & Sheng Cheng & Juyeong Kim & Hui Xiong & Xianqi Wu & Mufan Li & Yong Wang & Hongfa Xiang & Zihao Ou & Xiao, 2025. "Observation of nanoparticle coalescence during core-shell metallic nanowire growth in colloids via nanoscale imaging," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Xiaoyu Song & Yahui Li & Meng Yin & Junfang Li & Haifeng Yang & Wei Liu & Xiaotian Wang & Guangcheng Xi, 2025. "Multilayered hollow transition metal nitride spheres made from single-source precursors for SERS analytics," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58114-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.