IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60135-3.html
   My bibliography  Save this article

Observation of nanoparticle coalescence during core-shell metallic nanowire growth in colloids via nanoscale imaging

Author

Listed:
  • Dahai Yang

    (Hefei University of Technology)

  • Xingyu Zhang

    (Beijing University of Technology)

  • Ruijie Yang

    (University of Calgary)

  • Bolin Zou

    (Hefei University of Technology)

  • Rui Huang

    (Hefei University of Technology)

  • Colin Ophus

    (Lawrence Berkeley National Laboratory
    Stanford University)

  • Chengyu Song

    (Lawrence Berkeley National Laboratory)

  • Sheng Cheng

    (University of Technology)

  • Juyeong Kim

    (Gyeongsang National University
    Gyeongsang National University)

  • Hui Xiong

    (Hefei University of Technology)

  • Xianqi Wu

    (Hefei University of Technology)

  • Mufan Li

    (Pecking University)

  • Yong Wang

    (Jiangsu University)

  • Hongfa Xiang

    (Hefei University of Technology
    Hefei University of Technology)

  • Zihao Ou

    (The University of Texas at Dallas)

  • Xiaohui Song

    (Hefei University of Technology
    Hefei University of Technology)

Abstract

The surface morphology and shape of crystalline nanowires significantly influence their functional properties, including phonon transport, electrocatalytic performance, to name but a few. However, the kinetic pathways driving these morphological changes remain underexplored due to challenges in real-space and real-time imaging at single-particle and atomic resolutions. This study investigates the dynamics of shell (Au, Pd, Pt, Fe, Cu, Ni) deposition on AuAg alloy seed nanowires during core-shell formation. By using chiral/non-chiral seed nanowires, advanced imaging techniques, including liquid-phase transmission electron microscopy (LPTEM), cryogenic TEM, and three-dimensional electron tomography, a three-step deposition process is revealed: heterogeneous nucleation, nanoparticle attachment, and coalescence. It is found that colloidal Ostwald ripening, metal reactivity, and deposition amount modulate nanoparticle size and surface roughness, shaping final morphologies. Noble metal nanoparticles (Au, Ag, Pd, Pt) coalesce with seed nanowire along the 〈111〉 direction, distinct from that of other metals. These findings are consistent across different metals, including Ru, Cu, Fe, and Ni, highlighting the hypothesis of these processes in nanowire formation. These findings enhance traditional crystallographic theories and provide a framework for designing nanowire morphology. Additionally, our imaging techniques may be applied to investigate phenomena like electrodeposition, dendrite growth in batteries, and membrane deformation.

Suggested Citation

  • Dahai Yang & Xingyu Zhang & Ruijie Yang & Bolin Zou & Rui Huang & Colin Ophus & Chengyu Song & Sheng Cheng & Juyeong Kim & Hui Xiong & Xianqi Wu & Mufan Li & Yong Wang & Hongfa Xiang & Zihao Ou & Xiao, 2025. "Observation of nanoparticle coalescence during core-shell metallic nanowire growth in colloids via nanoscale imaging," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60135-3
    DOI: 10.1038/s41467-025-60135-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60135-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60135-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Du & Feng Gao & Peng Cui & Zhiwu Yu & Wei Tong & Jihao Wang & Zhuang Ren & Chuang Song & Jiaying Xu & Haifeng Ma & Liyun Dang & Di Zhang & Qingyou Lu & Jun Jiang & Junfeng Wang & Li Pi & Zhigao Sh, 2023. "Twisting, untwisting, and retwisting of elastic Co-based nanohelices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Shiyuan Zhou & Jie Shi & Sangui Liu & Gen Li & Fei Pei & Youhu Chen & Junxian Deng & Qizheng Zheng & Jiayi Li & Chen Zhao & Inhui Hwang & Cheng-Jun Sun & Yuzi Liu & Yu Deng & Ling Huang & Yu Qiao & Gu, 2023. "Visualizing interfacial collective reaction behaviour of Li–S batteries," Nature, Nature, vol. 621(7977), pages 75-81, September.
    3. Jiangwei Wang & Frederic Sansoz & Jianyu Huang & Yi Liu & Shouheng Sun & Ze Zhang & Scott X. Mao, 2013. "Near-ideal theoretical strength in gold nanowires containing angstrom scale twins," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    4. Jaeyoung Hong & Jee-Hwan Bae & Hyesung Jo & Hee-Young Park & Sehyun Lee & Sung Jun Hong & Hoje Chun & Min Kyung Cho & Juyoung Kim & Joodeok Kim & Yongju Son & Haneul Jin & Jin-Yoo Suh & Sung-Chul Kim , 2022. "Metastable hexagonal close-packed palladium hydride in liquid cell TEM," Nature, Nature, vol. 603(7902), pages 631-636, March.
    5. Yadong Yin & A. Paul Alivisatos, 2005. "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature, Nature, vol. 437(7059), pages 664-670, September.
    6. Nick Clark & Daniel J. Kelly & Mingwei Zhou & Yi-Chao Zou & Chang Woo Myung & David G. Hopkinson & Christoph Schran & Angelos Michaelides & Roman Gorbachev & Sarah J. Haigh, 2022. "Tracking single adatoms in liquid in a transmission electron microscope," Nature, Nature, vol. 609(7929), pages 942-947, September.
    7. Lingzheng Bu & Shaojun Guo & Xu Zhang & Xuan Shen & Dong Su & Gang Lu & Xing Zhu & Jianlin Yao & Jun Guo & Xiaoqing Huang, 2016. "Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    8. Guomin Zhu & Maria L. Sushko & John S. Loring & Benjamin A. Legg & Miao Song & Jennifer A. Soltis & Xiaopeng Huang & Kevin M. Rosso & James J. De Yoreo, 2021. "Self-similar mesocrystals form via interface-driven nucleation and assembly," Nature, Nature, vol. 590(7846), pages 416-422, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungsu Kang & Joodeok Kim & Sungin Kim & Hoje Chun & Junyoung Heo & Cyril F. Reboul & Rubén Meana-Pañeda & Cong T. S. Van & Hyesung Choi & Yunseo Lee & Jinho Rhee & Minyoung Lee & Dohun Kang & Byung H, 2025. "Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Ji Hwan Kim & Mihyun Kim & Seong-Jun Kim & Shin-Yeong Kim & Seungho Yu & Wonchan Hwang & Eunji Kwon & Jae-Hong Lim & So Hee Kim & Yung-Eun Sung & Seung-Ho Yu, 2024. "Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Bum Chul Park & Min Jun Ko & Young Kwang Kim & Gyu Won Kim & Myeong Soo Kim & Thomas Myeongseok Koo & Hong En Fu & Young Keun Kim, 2022. "Surface-ligand-induced crystallographic disorder–order transition in oriented attachment for the tuneable assembly of mesocrystals," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Hui Jin & Zhewei Xu & Zhi-Yi Hu & Zhiwen Yin & Zhao Wang & Zhao Deng & Ping Wei & Shihao Feng & Shunhong Dong & Jinfeng Liu & Sicheng Luo & Zhaodong Qiu & Liang Zhou & Liqiang Mai & Bao-Lian Su & Dong, 2023. "Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Miao Song & Dingri Zhang & Dan Leng & Jaewon Lee & Ziang Yang & Jiaxuan Chen & Dan Li & Lei Wang & Gang Zhou & Rui Yang & Kechao Zhou, 2024. "In situ atomic observations of aggregation growth and evolution of penta-twinned gold nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yanping Chen & Yu Yao & Wantong Zhao & Lifeng Wang & Haitao Li & Jiangwei Zhang & Baojun Wang & Yi Jia & Riguang Zhang & Yan Yu & Jian Liu, 2023. "Precise solid-phase synthesis of CoFe@FeOx nanoparticles for efficient polysulfide regulation in lithium/sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Ahmed M. Abdellah & Fatma Ismail & Oliver W. Siig & Jie Yang & Carmen M. Andrei & Liza-Anastasia DiCecco & Amirhossein Rakhsha & Kholoud E. Salem & Kathryn Grandfield & Nabil Bassim & Robert Black & G, 2024. "Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Qian Zhang & Ranming Niu & Ying Liu & Jiaxi Jiang & Fan Xu & Xuan Zhang & Julie M. Cairney & Xianghai An & Xiaozhou Liao & Huajian Gao & Xiaoyan Li, 2023. "Room-temperature super-elongation in high-entropy alloy nanopillars," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Hamed Almohammadi & Sandra Martinek & Ye Yuan & Peter Fischer & Raffaele Mezzenga, 2023. "Disentangling kinetics from thermodynamics in heterogeneous colloidal systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Qin Yang & Jinyan Cai & Guanwu Li & Runhua Gao & Zhiyuan Han & Jingjing Han & Dong Liu & Lixian Song & Zixiong Shi & Dong Wang & Gongming Wang & Weitao Zheng & Guangmin Zhou & Yingze Song, 2024. "Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium–sulfur reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Laihao Luo & Xinyan Liu & Xinyu Zhao & Xinyan Zhang & Hong-Jie Peng & Ke Ye & Kun Jiang & Qiu Jiang & Jie Zeng & Tingting Zheng & Chuan Xia, 2024. "Pressure-induced generation of heterogeneous electrocatalytic metal hydride surfaces for sustainable hydrogen transfer," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Xiongwei Zhong & Xiao Xiao & Qizhen Li & Mengtian Zhang & Zhitong Li & Leyi Gao & Biao Chen & Zhiyang Zheng & Qingjin Fu & Xingzhu Wang & Guangmin Zhou & Baomin Xu, 2024. "Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Chengpeng Yang & Bozhao Zhang & Libo Fu & Zhanxin Wang & Jiao Teng & Ruiwen Shao & Ziqi Wu & Xiaoxue Chang & Jun Ding & Lihua Wang & Xiaodong Han, 2023. "Chemical inhomogeneity–induced profuse nanotwinning and phase transformation in AuCu nanowires," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Tong Zhang & Yuanbiao Tong & Chenxinyu Pan & Jun Pei & Xiaomeng Wang & Tao Liu & Binglun Yin & Pan Wang & Yang Gao & Limin Tong & Wei Yang, 2025. "Challenging the ideal strength limit in single-crystalline gold nanoflakes through phase engineering," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Wanqing Song & Zhenzhuang Wen & Xin Wang & Kunyan Qian & Tao Zhang & Haozhi Wang & Jia Ding & Wenbin Hu, 2025. "Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Guomin Zhu & Benjamin A. Legg & Michel Sassi & Xinran Liang & Meirong Zong & Kevin M. Rosso & James J. Yoreo, 2023. "Crystal dissolution by particle detachment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Fatima A. Davila-Hernandez & Biao Jin & Harley Pyles & Shuai Zhang & Zheming Wang & Timothy F. Huddy & Asim K. Bera & Alex Kang & Chun-Long Chen & James J. Yoreo & David Baker, 2023. "Directing polymorph specific calcium carbonate formation with de novo protein templates," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60135-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.