IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28346-0.html
   My bibliography  Save this article

Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs

Author

Listed:
  • Jiajun Zhao

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Cehuang Fu

    (Shanghai Jiao Tong University)

  • Ke Ye

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Zheng Liang

    (Shanghai Jiao Tong University)

  • Fangling Jiang

    (Chinese Academy of Sciences)

  • Shuiyun Shen

    (Shanghai Jiao Tong University)

  • Xiaoran Zhao

    (Shanghai Jiao Tong University)

  • Lu Ma

    (Brookhaven National Laboratory)

  • Zulipiya Shadike

    (Shanghai Jiao Tong University)

  • Xiaoming Wang

    (Shantou University)

  • Junliang Zhang

    (Shanghai Jiao Tong University)

  • Kun Jiang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Electrochemical oxygen reduction could proceed via either 4e−-pathway toward maximum chemical-to-electric energy conversion or 2e−-pathway toward onsite H2O2 production. Bulk Pt catalysts are known as the best monometallic materials catalyzing O2-to-H2O conversion, however, controversies on the reduction product selectivity are noted for atomic dispersed Pt catalysts. Here, we prepare a series of carbon supported Pt single atom catalyst with varied neighboring dopants and Pt site densities to investigate the local coordination environment effect on branching oxygen reduction pathway. Manipulation of 2e− or 4e− reduction pathways is demonstrated through modification of the Pt coordination environment from Pt-C to Pt-N-C and Pt-S-C, giving rise to a controlled H2O2 selectivity from 23.3% to 81.4% and a turnover frequency ratio of H2O2/H2O from 0.30 to 2.67 at 0.4 V versus reversible hydrogen electrode. Energetic analysis suggests both 2e− and 4e− pathways share a common intermediate of *OOH, Pt-C motif favors its dissociative reduction while Pt-S and Pt-N motifs prefer its direct protonation into H2O2. By taking the Pt-N-C catalyst as a stereotype, we further demonstrate that the maximum H2O2 selectivity can be manipulated from 70 to 20% with increasing Pt site density, providing hints for regulating the stepwise oxygen reduction in different application scenarios.

Suggested Citation

  • Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28346-0
    DOI: 10.1038/s41467-022-28346-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28346-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28346-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang Hyuck Choi & Minho Kim & Han Chang Kwon & Sung June Cho & Seongho Yun & Hee-Tak Kim & Karl J. J. Mayrhofer & Hyungjun Kim & Minkee Choi, 2016. "Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    2. Jing Liu & Menggai Jiao & Lanlu Lu & Heather M. Barkholtz & Yuping Li & Ying Wang & Luhua Jiang & Zhijian Wu & Di-jia Liu & Lin Zhuang & Chao Ma & Jie Zeng & Bingsen Zhang & Dangsheng Su & Ping Song &, 2017. "Erratum: High performance platinum single atom electrocatalyst for oxygen reduction reaction," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    3. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    4. Félix-Navarro, R.M. & Beltrán-Gastélum, M. & Reynoso-Soto, E.A. & Paraguay-Delgado, F. & Alonso-Nuñez, G. & Flores-Hernández, J.R., 2016. "Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction," Renewable Energy, Elsevier, vol. 87(P1), pages 31-41.
    5. Kun Jiang & Seoin Back & Austin J. Akey & Chuan Xia & Yongfeng Hu & Wentao Liang & Diane Schaak & Eli Stavitski & Jens K. Nørskov & Samira Siahrostami & Haotian Wang, 2019. "Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Jing Liu & Menggai Jiao & Lanlu Lu & Heather M. Barkholtz & Yuping Li & Ying Wang & Luhua Jiang & Zhijian Wu & Di-jia Liu & Lin Zhuang & Chao Ma & Jie Zeng & Bingsen Zhang & Dangsheng Su & Ping Song &, 2017. "High performance platinum single atom electrocatalyst for oxygen reduction reaction," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Junsic Cho & Taejung Lim & Haesol Kim & Ling Meng & Jinjong Kim & Seunghoon Lee & Jong Hoon Lee & Gwan Yeong Jung & Kug-Seung Lee & Francesc Viñes & Francesc Illas & Kai S. Exner & Sang Hoon Joo & Cha, 2023. "Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Fei He & Seunghyun Weon & Woojung Jeon & Myoung Won Chung & Wonyong Choi, 2021. "Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
    4. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    7. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    8. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.
    10. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    11. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    12. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    14. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    15. Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Liu, Jing & Mi, Liwei & Xing, Yanan & Wang, Tianfu & Wang, Fu, 2020. "Construction of Ti3C2 supported hybrid Co3O4/NCNTs composite as an efficient oxygen reduction electrocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 1168-1173.
    17. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    18. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    19. Wei Peng & Jiaxin Liu & Xiaoqing Liu & Liqun Wang & Lichang Yin & Haotian Tan & Feng Hou & Ji Liang, 2023. "Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28346-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.