IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63224-5.html
   My bibliography  Save this article

Polymer-guided grafting of single W atoms onto titanate nanotubes increases SERS activity in semiconductors

Author

Listed:
  • Jinyu Zhou

    (Nanjing University
    Chinese Academy of Sciences
    Suzhou University of Science and Technology)

  • Xiuling Zha

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Siying Ma

    (Nanjing University)

  • Sihui Wu

    (Suzhou University of Science and Technology
    Suzhou University of Science and Technology)

  • Chunlan Ma

    (Suzhou University of Science and Technology
    Suzhou University of Science and Technology)

  • Gaoyuan Chen

    (Suzhou University of Science and Technology
    Suzhou University of Science and Technology)

  • Zhigang Chen

    (Chinese Academy of Sciences)

  • Taoyang Zhang

    (Chinese Academy of Sciences)

  • Zhiwei Chen

    (Chinese Academy of Sciences)

  • Di Wang

    (Nanjing University)

  • Yuxiang Yan

    (Nanjing University)

  • Yuqing Sun

    (Nanjing University)

  • Hengdong Ren

    (Nanjing University)

  • Hongzhao Sun

    (Chinese Academy of Sciences
    Suzhou University of Science and Technology
    Suzhou University of Science and Technology)

  • Xinglong Wu

    (Nanjing University)

  • Zhigang Zhao

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Shan Cong

    (Chinese Academy of Sciences
    University of Science and Technology of China
    Jiangxi Institute of Nanotechnology)

Abstract

Metal single atoms have been demonstrated to induce surface-enhanced Raman scattering (SERS) due to their effectiveness in the modification of electronic structure. However, precisely modulating the relative positions of metal single atoms on sub-nanolattices remains a formidable challenge, which makes SERS studies of metal single atoms dependent on localized environments still lacking. Herein, we rely on polyethylene glycol (PEG) as a soft template to achieve the modulation of the relative positions of W atoms on titanate nanotubes (W-TNTs) and probe the local-environment-dependent SERS induced by metal single atoms based on this technique. We find that the relative position of the W single atoms greatly affects their SERS performance. This phenomenon has been attributed to the difference in charge transfer ability between single W atoms of different configurations, with isolated W atoms inducing a significantly higher density of electronic states near the Fermi energy than associated W atoms, leading to an enhanced polarization of the probe molecule and subsequently a stronger Raman signal. Our findings demonstrate a technique to effectively control the relative positions of single atoms and provide insights into single-atom-induced SERS associated with localized environments, which will facilitate the rational design of SERS substrates based on metal single atoms.

Suggested Citation

  • Jinyu Zhou & Xiuling Zha & Siying Ma & Sihui Wu & Chunlan Ma & Gaoyuan Chen & Zhigang Chen & Taoyang Zhang & Zhiwei Chen & Di Wang & Yuxiang Yan & Yuqing Sun & Hengdong Ren & Hongzhao Sun & Xinglong W, 2025. "Polymer-guided grafting of single W atoms onto titanate nanotubes increases SERS activity in semiconductors," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63224-5
    DOI: 10.1038/s41467-025-63224-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63224-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63224-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu Li & Xavier Isidro Pereira-Hernández & Yizhen Chen & Jia Xu & Jiankang Zhao & Chih-Wen Pao & Chia-Yu Fang & Jie Zeng & Yong Wang & Bruce C. Gates & Jingyue Liu, 2022. "Functional CeOx nanoglues for robust atomically dispersed catalysts," Nature, Nature, vol. 611(7935), pages 284-288, November.
    2. Jing Liu & Menggai Jiao & Lanlu Lu & Heather M. Barkholtz & Yuping Li & Ying Wang & Luhua Jiang & Zhijian Wu & Di-jia Liu & Lin Zhuang & Chao Ma & Jie Zeng & Bingsen Zhang & Dangsheng Su & Ping Song &, 2017. "High performance platinum single atom electrocatalyst for oxygen reduction reaction," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    3. Zhigang Chen & Yafeng Xu & Ding Ding & Ge Song & Xingxing Gan & Hao Li & Wei Wei & Jian Chen & Zhiyun Li & Zhongmiao Gong & Xiaoming Dong & Chengfeng Zhu & Nana Yang & Jingyuan Ma & Rui Gao & Dan Luo , 2022. "Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jing Liu & Menggai Jiao & Lanlu Lu & Heather M. Barkholtz & Yuping Li & Ying Wang & Luhua Jiang & Zhijian Wu & Di-jia Liu & Lin Zhuang & Chao Ma & Jie Zeng & Bingsen Zhang & Dangsheng Su & Ping Song &, 2017. "Erratum: High performance platinum single atom electrocatalyst for oxygen reduction reaction," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    5. Shan Cong & Zhen Wang & Wenbin Gong & Zhigang Chen & Weibang Lu & John R. Lombardi & Zhigang Zhao, 2019. "Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Cao & Hongyu Guo & Ying Han & Menggang Li & Changshuai Shang & Rui Zhao & Qizheng Huang & Ming Li & Qinghua Zhang & Fan Lv & Hao Tan & Zhengyi Qian & Mingchuan Luo & Shaojun Guo, 2025. "Sandwiching intermetallic Pt3Fe and ionomer with porous N-doped carbon layers for oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Wanlin Zhou & Baojie Li & Xinyu Liu & Jingjing Jiang & Shuowen Bo & Chenyu Yang & Qizheng An & Yuhao Zhang & Mikhail A. Soldatov & Huijuan Wang & Shiqiang Wei & Qinghua Liu, 2024. "In situ tuning of platinum 5d valence states for four-electron oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Benjamin Bohigues & Sergio Rojas-Buzo & Davide Salusso & Yu Xia & Avelino Corma & Silvia Bordiga & Mercedes Boronat & Tom Willhammar & Manuel Moliner & Pedro Serna, 2025. "Overcoming activity/stability tradeoffs in CO oxidation catalysis by Pt/CeO2," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Xiansheng Li & Xing Wang & Arik Beck & Mikalai Artsiusheuski & Qianyu Liu & Qiang Liu & Henrik Eliasson & Frank Krumeich & Ulrich Aschauer & Giovanni Pizzi & Rolf Erni & Jeroen A. Bokhoven & Luca Arti, 2025. "Quantifying electronic and geometric effects on the activity of platinum catalysts for water-gas shift," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Zhigang Chen & Wenbin Gong & Juan Wang & Shuang Hou & Guang Yang & Chengfeng Zhu & Xiyue Fan & Yifan Li & Rui Gao & Yi Cui, 2023. "Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    14. Wanqing Song & Xinyi Yang & Tao Zhang & Zechuan Huang & Haozhi Wang & Jie Sun & Yunhua Xu & Jia Ding & Wenbin Hu, 2024. "Optimizing potassium polysulfides for high performance potassium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yamei Fan & Rongtan Li & Beibei Wang & Xiaohui Feng & Xiangze Du & Chengxiang Liu & Fei Wang & Conghui Liu & Cui Dong & Yanxiao Ning & Rentao Mu & Qiang Fu, 2024. "Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yong Yin & Bingcheng Luo & Kezhi Li & Benjamin M. Moskowitz & Bar Mosevitzky Lis & Israel E. Wachs & Minghui Zhu & Ye Sun & Tianle Zhu & Xiang Li, 2024. "Plasma-assisted manipulation of vanadia nanoclusters for efficient selective catalytic reduction of NOx," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Zhi-Quan Zhang & Pi-Jun Duan & Jie-Xuan Zheng & Yun-Qiu Xie & Chang-Wei Bai & Yi-Jiao Sun & Xin-Jia Chen & Fei Chen & Han-Qing Yu, 2025. "Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in Fenton-like reactions," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Zhigang Chen & Minghao Yang & Yifan Li & Wenbin Gong & Juan Wang & Tong Liu & Chunyu Zhang & Shuang Hou & Guang Yang & Hao Li & Ye Jin & Chunyan Zhang & Zhongqing Tian & Fancheng Meng & Yi Cui, 2025. "Termination-acidity tailoring of molybdenum carbides for alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Baojian Zhang & Rui Liu & Liangwei Li & Weihong Guo & Biluan Zhang & Bosheng Chen & Weidong Yuan & Pan Li & Shaowen Zhang & Jinlong Wang & Ji Yang & Zhu Luo & Yanbing Guo, 2025. "Ultra-stable low-coordinated PtSA/CeZrO2 ordered macroporous structure integrated industrial-scale monolithic catalysts for high-temperature oxidation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63224-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.