Author
Listed:
- Benjamin Bohigues
(Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas)
- Sergio Rojas-Buzo
(Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
University of Turin)
- Davide Salusso
(CS 40220)
- Yu Xia
(Stockholm University)
- Avelino Corma
(Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas)
- Silvia Bordiga
(University of Turin)
- Mercedes Boronat
(Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas)
- Tom Willhammar
(Stockholm University)
- Manuel Moliner
(Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas)
- Pedro Serna
(Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas)
Abstract
The use of redox active metal oxides to support noble metals is critical in the design of highly-active CO oxidation catalysts for gas emissions control. Unfortunately, supports promoting the activity, such as CeO2, tend also to promote acute catalyst deactivation by turning highly-active metallic Pt clusters into less-active PtOx species, under practical reaction conditions (high-temperature and/or the excess of O2). This leads to a problematic activity/stability tradeoff where Pt/CeO2 catalysts, highly-active, and Pt on non-reducible supports, highly stable, are bookends. Herein, we report a method to trap Pt at V-shaped pockets/stepped sites of CeO2 that break this undesired correlation by showing both high activity and stability in the CO oxidation reaction. XAS, CO-DRIFT, XPS, HAADF-STEM, and DFT are used to infer that the generation of low order metallic Pt clusters connected to two crystallographic planes of the support is key to inhibit (deactivating) re-oxidation paths of the metal, as a result of the high-energy required to form disordered/distorted PtOx ensembles at these positions. This new material allows, thus, to operate outside the commonly observed, limiting, activity/stability tradeoff.
Suggested Citation
Benjamin Bohigues & Sergio Rojas-Buzo & Davide Salusso & Yu Xia & Avelino Corma & Silvia Bordiga & Mercedes Boronat & Tom Willhammar & Manuel Moliner & Pedro Serna, 2025.
"Overcoming activity/stability tradeoffs in CO oxidation catalysis by Pt/CeO2,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62726-6
DOI: 10.1038/s41467-025-62726-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62726-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.