IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63858-5.html
   My bibliography  Save this article

Facile cascade-anchored synthesis of ultrahigh metal loading single-atom for significantly improved Fenton-like catalysis

Author

Listed:
  • Shuaishuai Li

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Wei Wang

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Huizhong Wu

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Xuechun Wang

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Shihu Ding

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Jingyang Liu

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Xiuwu Zhang

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Jiangli Sun

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Chunhong Fu

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

  • Minghua Zhou

    (MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Enviromental Science and Engineering, Nankai University
    Nankai University
    Nankai University)

Abstract

It is crucial to break the low metal-loading limitation and reveal the intersite synergy-governed catalytic behavior of single-atom catalysts (SACs). Here, a universal synthesis strategy achieves record loadings of transition metals (Fe 41.31 wt%, Mn 35.13 wt%), rare-earth metals (La 28.62 wt%), and noble metals (Ag 27.04 wt%). The strong oxalic acid-metal chelation and concurrent entangled polymer networks enable high-loading SACs. High-density single atoms induce site-intensive effects, modulating electron density and valence states to achieve peroxymonosulfate-based Fenton-like reactions with rate constants 1-2 orders of magnitude higher than conventional SACs. Elevated metal loading boosts Fenton-like potential jumps, facilitates electron transfer, and reduces the rate-limiting energy barrier in 1O2 production. This material is also proven effective in real wastewater treatment, combining high decontamination efficiency with operational stability. It is anticipated that the cascade-anchoring synthesis strategy will take SACs a step closer to practical applications.

Suggested Citation

  • Shuaishuai Li & Wei Wang & Huizhong Wu & Xuechun Wang & Shihu Ding & Jingyang Liu & Xiuwu Zhang & Jiangli Sun & Chunhong Fu & Minghua Zhou, 2025. "Facile cascade-anchored synthesis of ultrahigh metal loading single-atom for significantly improved Fenton-like catalysis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63858-5
    DOI: 10.1038/s41467-025-63858-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63858-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63858-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Md Delowar Hossain & Yufeng Huang & Ted H. Yu & William A. Goddard III & Zhengtang Luo, 2020. "Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Xu Li & Xavier Isidro Pereira-Hernández & Yizhen Chen & Jia Xu & Jiankang Zhao & Chih-Wen Pao & Chia-Yu Fang & Jie Zeng & Yong Wang & Bruce C. Gates & Jingyue Liu, 2022. "Functional CeOx nanoglues for robust atomically dispersed catalysts," Nature, Nature, vol. 611(7935), pages 284-288, November.
    3. Lu Zhao & Yun Zhang & Lin-Bo Huang & Xiao-Zhi Liu & Qing-Hua Zhang & Chao He & Ze-Yuan Wu & Lin-Juan Zhang & Jinpeng Wu & Wanli Yang & Lin Gu & Jin-Song Hu & Li-Jun Wan, 2019. "Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Hongpan Rong & Shufang Ji & Jiatao Zhang & Dingsheng Wang & Yadong Li, 2020. "Synthetic strategies of supported atomic clusters for heterogeneous catalysis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Ying-Jie Zhang & Gui-Xiang Huang & Lea R. Winter & Jie-Jie Chen & Lili Tian & Shu-Chuan Mei & Ze Zhang & Fei Chen & Zhi-Yan Guo & Rong Ji & Ye-Zi You & Wen-Wei Li & Xian-Wei Liu & Han-Qing Yu & Menach, 2022. "Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Lixin Wang & Longjun Rao & Maoxi Ran & Qikai Shentu & Zenglong Wu & Wenkai Song & Ziwei Zhang & Hao Li & Yuyuan Yao & Weiyang Lv & Mingyang Xing, 2023. "A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Yan Lan & Yu-Hang Li & Chong-Chen Wang & Xin-Jie Li & Jiazhen Cao & Linghui Meng & Shuai Gao & Yuhui Ma & Haodong Ji & Mingyang Xing, 2024. "Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ruijie Xie & Kaiheng Guo & Yong Li & Yingguang Zhang & Huanran Zhong & Dennis Y. C. Leung & Haibao Huang, 2024. "Harnessing air-water interface to generate interfacial ROS for ultrafast environmental remediation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yi Zhou & Wenxuan Guo & Yanpan Li & Ming Gao & Xuning Li & Wenyuan Liu & Zhuan Chen & Xiaohui Zhang & Yanbo Zhou & Mingyang Xing, 2025. "Insights into free radical and non-radical routes regulation for water cleanup," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Hong-Zhi Liu & Xiao-Xuan Shu & Mingjie Huang & Bing-Bing Wu & Jie-Jie Chen & Xi-Sheng Wang & Hui-Lin Li & Han-Qing Yu, 2024. "Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Xiaohui He & Hao Zhang & Xingcong Zhang & Ying Zhang & Qian He & Hongyu Chen & Yujie Cheng & Mi Peng & Xuetao Qin & Hongbing Ji & Ding Ma, 2022. "Building up libraries and production line for single atom catalysts with precursor-atomization strategy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Benjamin Bohigues & Sergio Rojas-Buzo & Davide Salusso & Yu Xia & Avelino Corma & Silvia Bordiga & Mercedes Boronat & Tom Willhammar & Manuel Moliner & Pedro Serna, 2025. "Overcoming activity/stability tradeoffs in CO oxidation catalysis by Pt/CeO2," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Xinyi Yang & Wanqing Song & Kang Liao & Xiaoyang Wang & Xin Wang & Jinfeng Zhang & Haozhi Wang & Yanan Chen & Ning Yan & Xiaopeng Han & Jia Ding & Wenbin Hu, 2024. "Cohesive energy discrepancy drives the fabrication of multimetallic atomically dispersed materials for hydrogen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jiannan Du & Guokang Han & Wei Zhang & Lingfeng Li & Yuqi Yan & Yaoxuan Shi & Xue Zhang & Lin Geng & Zhijiang Wang & Yueping Xiong & Geping Yin & Chunyu Du, 2023. "CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jinyu Zhou & Xiuling Zha & Siying Ma & Sihui Wu & Chunlan Ma & Gaoyuan Chen & Zhigang Chen & Taoyang Zhang & Zhiwei Chen & Di Wang & Yuxiang Yan & Yuqing Sun & Hengdong Ren & Hongzhao Sun & Xinglong W, 2025. "Polymer-guided grafting of single W atoms onto titanate nanotubes increases SERS activity in semiconductors," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Zhibo Yao & Hao Cheng & Yifei Xu & Xinyu Zhan & Song Hong & Xinyi Tan & Tai-Sing Wu & Pei Xiong & Yun-Liang Soo & Molly Meng-Jung Li & Leiduan Hao & Liang Xu & Alex W. Robertson & Bingjun Xu & Ming Ya, 2024. "Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Linbo Li & Xin Lei & Zhilong Zheng & Yingjun Dong & Haohui Chen & Jun Chen & Yi Zhong & Yongping Zheng & Yongbing Tang & Xiaolong Zhang & Hui-Ming Cheng, 2025. "Tuning binding strength between single metal atoms and supports enhances electrochemical CO2 methanation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    15. Xu Wu & Yang Chen & Bing Tang & Qiong Yan & Deyu Wu & Heng Zhou & Hao Wang & Heng Zhang & Daoping He & Hui Li & Jianrong Zeng & Lanlu Lu & Song Yang & Tianyi Ma, 2025. "CeOx-Integrated dual site enhanced urea electrosynthesis from nitrate and carbon dioxide," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Liangjun Chen & Guinan Chen & Chengtao Gong & Yifei Zhang & Zhihao Xing & Jiahao Li & Guodong Xu & Gao Li & Yongwu Peng, 2024. "Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Shuhu Yin & Hongyuan Yi & Mengli Liu & Jian Yang & Shuangli Yang & Bin-Wei Zhang & Long Chen & Xiaoyang Cheng & Huan Huang & Rui Huang & Yanxia Jiang & Honggang Liao & Shigang Sun, 2024. "An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Yamei Fan & Rongtan Li & Beibei Wang & Xiaohui Feng & Xiangze Du & Chengxiang Liu & Fei Wang & Conghui Liu & Cui Dong & Yanxiao Ning & Rentao Mu & Qiang Fu, 2024. "Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Jia-Lan Chen & Xue-Chun Jiang & Li Feng & Jinze Zhu & Jian-Wen Zhao & Jin-Xun Liu & Wei-Xue Li, 2025. "Collectivity effect in cluster catalysis under operational conditions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63858-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.