IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59722-1.html
   My bibliography  Save this article

Unlocking single-atom induced electronic metal-support interactions in electrocatalytic one-electron water oxidation for wastewater purification

Author

Listed:
  • Sen Lu

    (Shenzhen (HITSZ)
    The University of Adelaide)

  • Xuechuan Li

    (Shenzhen (HITSZ))

  • Guan Zhang

    (Shenzhen (HITSZ))

  • Shaobin Wang

    (The University of Adelaide)

Abstract

Electro-oxidation is a promising green technology for decentralized wastewater purification. However, its efficacy is primarily constrained by the selectivity and efficiency of hydroxyl radical (•OH) generation through one-electron water oxidation. In this study, we elucidate the mechanism of electronic metal-support interactions (EMSI) of Ni single-atoms on antimony-doped tin oxide anode (Ni/ATO) to enhance •OH production and overall water treatment efficiency. We experimentally and theoretically investigate both the structural evolution process and micro-interface mechanisms associated with the EMSI effects induced by Ni single-atoms. The optimized electronic structures in the interfacial catalysts under EMSI conditions and the co-catalytic role of Ni single-atoms synergistically facilitate selective and efficient •OH generation, resulting in over a fivefold increase in its steady-state concentration and tenfold enhancement in pseudo-first-order rate constant of sulfamethoxazole degradation compared to those on bare ATO. With the EMSI, rapid electron transfer channels were established for a marked enhancement in the adsorption, conversion, and dissociation of interfacial H2O molecules. Notably, it is revealed that Ni single-atoms serve as co-catalytic sites, exhibiting a “H-pulling effect” that is crucial for •OH generation. The Ni/ATO anode demonstrates great efficiency in degrading various refractory organic pollutants, and effectively treats real pharmaceutical wastewater with low energy consumption. Furthermore, it presents remarkable stability and adaptability, while maintaining a minimal environmental footprint during wastewater treatment processes. This work addresses the theoretical gaps between EMSI effects and co-catalysis in electro-oxidation systems, while providing a robust technological solution for wastewater purification.

Suggested Citation

  • Sen Lu & Xuechuan Li & Guan Zhang & Shaobin Wang, 2025. "Unlocking single-atom induced electronic metal-support interactions in electrocatalytic one-electron water oxidation for wastewater purification," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59722-1
    DOI: 10.1038/s41467-025-59722-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59722-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59722-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Tan & Shaohua Xie & Duy Le & Weijian Diao & Meiyu Wang & Ke-Bin Low & Dave Austin & Sampyo Hong & Fei Gao & Lin Dong & Lu Ma & Steven N. Ehrlich & Talat S. Rahman & Fudong Liu, 2022. "Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Mengyun Hou & Lirong Zheng & Di Zhao & Xin Tan & Wuyi Feng & Jiantao Fu & Tianxin Wei & Minhua Cao & Jiatao Zhang & Chen Chen, 2024. "Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    4. Wenchao Wan & Yonggui Zhao & Shiqian Wei & Carlos A. Triana & Jingguo Li & Andrea Arcifa & Christopher S. Allen & Rui Cao & Greta R. Patzke, 2021. "Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Xiaorui Du & Yike Huang & Xiaoli Pan & Bing Han & Yang Su & Qike Jiang & Mingrun Li & Hailian Tang & Gao Li & Botao Qiao, 2020. "Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Zhenyu Shi & Xiao Zhang & Xiaoqian Lin & Guigao Liu & Chongyi Ling & Shibo Xi & Bo Chen & Yiyao Ge & Chaoliang Tan & Zhuangchai Lai & Zhiqi Huang & Xinyang Ruan & Li Zhai & Lujiang Li & Zijian Li & Xi, 2023. "Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution," Nature, Nature, vol. 621(7978), pages 300-305, September.
    8. Jiafeng Yu & Xingtao Sun & Xin Tong & Jixin Zhang & Jie Li & Shiyan Li & Yuefeng Liu & Noritatsu Tsubaki & Takayuki Abe & Jian Sun, 2021. "Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiawei Tao & Ruiqin Gao & Geyu Lin & Chaoyang Chu & Yan Sun & Chunyang Yu & Yanhang Ma & Huibin Qiu, 2025. "Synthesis of noble metal nanoarrays via agglomeration and metallurgy for acidic water electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jian Zhang & Dezhi Zhu & Jianfeng Yan & Chang-An Wang, 2021. "Strong metal-support interactions induced by an ultrafast laser," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Cong-Xiao Wang & Hao-Xin Liu & Hao Gu & Jin-Ying Li & Xiao-Meng Lai & Xin-Pu Fu & Wei-Wei Wang & Qiang Fu & Feng Ryan Wang & Chao Ma & Chun-Jiang Jia, 2024. "Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Kai Xu & Chao Ma & Han Yan & Hao Gu & Wei-Wei Wang & Shan-Qing Li & Qing-Lu Meng & Wei-Peng Shao & Guo-Heng Ding & Feng Ryan Wang & Chun-Jiang Jia, 2022. "Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Chen Cao & Miaomiao Ying, 2025. "Assessing Water Resource Vulnerability in an Agricultural Basin for Climate Change Adaptation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 179-205, January.
    11. Yong Zhang & Feifei Chen & Xinyi Yang & Yiran Guo & Xinghua Zhang & Hong Dong & Weihua Wang & Feng Lu & Zunming Lu & Hui Liu & Hui Liu & Yao Xiao & Yahui Cheng, 2025. "Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Chengdong Yang & Yun Gao & Zhengyu Xing & Xinxin Shu & Zechao Zhuang & Yueqing Wang & Yijuan Zheng & Shuang Li & Chong Cheng & Dingsheng Wang & Jintao Zhang, 2025. "Bioinspired Sulfo oxygen bridges optimize interfacial water structure for enhanced hydrogen oxidation and evolution reactions," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Ruiying Li & Jingyuan Shang & Fei Wang & Qing Lu & Hao Yan & Yongxiao Tuo & Yibin Liu & Xiang Feng & Xiaobo Chen & De Chen & Chaohe Yang, 2025. "Quantification and optimization of platinum–molybdenum carbide interfacial sites to enhance low-temperature water-gas shift reaction," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    16. Shengqi Wang & Wenjie Li & Junying Xue & Jifeng Ge & Jing He & Junyang Hou & Yu Xie & Yuan Li & Hao Zhang & Zdeněk Sofer & Zhaoyang Lin, 2024. "A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Yinghao Li & Chun-Kuo Peng & Yuntong Sun & L. D. Nicole Sui & Yu-Chung Chang & San-Yuan Chen & Yingtang Zhou & Yan-Gu Lin & Jong-Min Lee, 2024. "Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiaoqi Lang & Lixue Shi & Zhilun Zhao & Wei Min, 2024. "Probing the structure of water in individual living cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Qing Ma & Yongjun Gao & Chengcheng Cai & Tianfu Wang & Ding Ma, 2025. "Syngas from waste plastics and water using Joule heating," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59722-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.