IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26335-3.html
   My bibliography  Save this article

Divergent abiotic spectral pathways unravel pathogen stress signals across species

Author

Listed:
  • P. J. Zarco-Tejada

    (University of Melbourne
    Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC))

  • T. Poblete

    (University of Melbourne)

  • C. Camino

    (European Commission, Joint Research Centre (JRC))

  • V. Gonzalez-Dugo

    (Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC))

  • R. Calderon

    (School of Integrative Plant Science, Cornell AgriTech, Cornell University)

  • A. Hornero

    (Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC)
    Swansea University)

  • R. Hernandez-Clemente

    (Swansea University)

  • M. Román-Écija

    (Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC))

  • M. P. Velasco-Amo

    (Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC))

  • B. B. Landa

    (Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC))

  • P. S. A. Beck

    (European Commission, Joint Research Centre (JRC))

  • M. Saponari

    (CNR, Istituto per la Protezione Sostenibile delle Piante)

  • D. Boscia

    (CNR, Istituto per la Protezione Sostenibile delle Piante)

  • J. A. Navas-Cortes

    (Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC))

Abstract

Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic–abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide.

Suggested Citation

  • P. J. Zarco-Tejada & T. Poblete & C. Camino & V. Gonzalez-Dugo & R. Calderon & A. Hornero & R. Hernandez-Clemente & M. Román-Écija & M. P. Velasco-Amo & B. B. Landa & P. S. A. Beck & M. Saponari & D. , 2021. "Divergent abiotic spectral pathways unravel pathogen stress signals across species," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26335-3
    DOI: 10.1038/s41467-021-26335-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26335-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26335-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew C. Fisher & Daniel. A. Henk & Cheryl J. Briggs & John S. Brownstein & Lawrence C. Madoff & Sarah L. McCraw & Sarah J. Gurr, 2012. "Emerging fungal threats to animal, plant and ecosystem health," Nature, Nature, vol. 484(7393), pages 186-194, April.
    2. Kevin Schneider & Wopke van der Werf & Martina Cendoya & Monique Mourits & Juan A. Navas-Cortés & Antonio Vicent & Alfons Oude Lansink, 2020. "Impact of Xylella fastidiosa subspecies pauca in European olives," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(17), pages 9250-9259, April.
    3. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarco-Tejada, Pablo, 2021. "Advanced monitoring techniques," 2021: Food and Nutrition Security - The Biosecurity, Trade, Health Nexus, 13-14 December 2021 320490, Crawford Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    2. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    3. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    5. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    6. Riza, Lala Septem & Bergmeir, Christoph & Herrera, Francisco & Benítez, José M., 2015. "frbs: Fuzzy Rule-Based Systems for Classification and Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i06).
    7. Karin Wolffhechel & Amanda C Hahn & Hanne Jarmer & Claire I Fisher & Benedict C Jones & Lisa M DeBruine, 2015. "Testing the Utility of a Data-Driven Approach for Assessing BMI from Face Images," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    8. Annika Djurle & Beth Young & Anna Berlin & Ivar Vågsholm & Anne-Lie Blomström & Jim Nygren & Anders Kvarnheden, 2022. "Addressing biohazards to food security in primary production," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1475-1497, December.
    9. Telesca, Luciano & Abate, Nicodemo & Faridani, Farid & Lovallo, Michele & Lasaponara, Rosa, 2023. "Revealing traits of phytopathogenic status induced by Xylella Fastidiosa in olive trees by analysing multifractal and informational patterns of MODIS satellite evapotranspiration data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    10. Andrea S Martinez-Vernon & James A Covington & Ramesh P Arasaradnam & Siavash Esfahani & Nicola O’Connell & Ioannis Kyrou & Richard S Savage, 2018. "An improved machine learning pipeline for urinary volatiles disease detection: Diagnosing diabetes," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    11. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    12. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    13. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    14. Uwe Ligges & Sebastian Krey, 2011. "Feature clustering for instrument classification," Computational Statistics, Springer, vol. 26(2), pages 279-291, June.
    15. Arnout Van Messem & Andreas Christmann, 2010. "A review on consistency and robustness properties of support vector machines for heavy-tailed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 199-220, September.
    16. Roland A. Knapp & Mark Q. Wilber & Maxwell B. Joseph & Thomas C. Smith & Robert L. Grasso, 2024. "Reintroduction of resistant frogs facilitates landscape-scale recovery in the presence of a lethal fungal disease," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Jacobi Liana & Kwok Chun Fung & Ramírez-Hassan Andrés & Nghiem Nhung, 2024. "Posterior Manifolds over Prior Parameter Regions: Beyond Pointwise Sensitivity Assessments for Posterior Statistics from MCMC Inference," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 403-434, April.
    18. Nunes, Matthew, 2015. "Statistical Analysis of Network Data with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(b01).
    19. Ana Patrícia Rocha & Hugo Miguel Pereira Choupina & Maria do Carmo Vilas-Boas & José Maria Fernandes & João Paulo Silva Cunha, 2018. "System for automatic gait analysis based on a single RGB-D camera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
    20. Samir K. Safi & Sheema Gul, 2024. "An Enhanced Tree Ensemble for Classification in the Presence of Extreme Class Imbalance," Mathematics, MDPI, vol. 12(20), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26335-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.