IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i4d10.1038_s41558-018-0108-y.html
   My bibliography  Save this article

Quantified, localized health benefits of accelerated carbon dioxide emissions reductions

Author

Listed:
  • Drew Shindell

    (Duke University
    Duke University)

  • Greg Faluvegi

    (Columbia University and NASA Goddard Institute for Space Studies)

  • Karl Seltzer

    (Duke University)

  • Cary Shindell

    (Duke University)

Abstract

Societal risks increase as Earth warms, and increase further for emissions trajectories accepting relatively high levels of near-term emissions while assuming future negative emissions will compensate, even if they lead to identical warming as trajectories with reduced near-term emissions 1 . Accelerating carbon dioxide (CO2) emissions reductions, including as a substitute for negative emissions, hence reduces long-term risks but requires dramatic near-term societal transformations 2 . A major barrier to emissions reductions is the difficulty of reconciling immediate, localized costs with global, long-term benefits3,4. However, 2 °C trajectories not relying on negative emissions or 1.5 °C trajectories require elimination of most fossil-fuel-related emissions. This generally reduces co-emissions that cause ambient air pollution, resulting in near-term, localized health benefits. We therefore examine the human health benefits of increasing 21st-century CO2 reductions by 180 GtC, an amount that would shift a ‘standard’ 2 °C scenario to 1.5 °C or could achieve 2 °C without negative emissions. The decreased air pollution leads to 153 ± 43 million fewer premature deaths worldwide, with ~40% occurring during the next 40 years, and minimal climate disbenefits. More than a million premature deaths would be prevented in many metropolitan areas in Asia and Africa, and >200,000 in individual urban areas on every inhabited continent except Australia.

Suggested Citation

  • Drew Shindell & Greg Faluvegi & Karl Seltzer & Cary Shindell, 2018. "Quantified, localized health benefits of accelerated carbon dioxide emissions reductions," Nature Climate Change, Nature, vol. 8(4), pages 291-295, April.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:4:d:10.1038_s41558-018-0108-y
    DOI: 10.1038/s41558-018-0108-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0108-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0108-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vajjarapu, Harsha & Verma, Ashish, 2022. "Understanding the mitigation potential of sustainable urban transport measures across income and gender groups," Journal of Transport Geography, Elsevier, vol. 102(C).
    2. Katarzyna Sanak-Kosmowska & Jan W. Wiktor, 2021. "The Morphology and Differentiation of the Content of International Debate on Renewable Energy. A Bibliometric Analysis of Web of Science, Scopus, and Twitter," Energies, MDPI, vol. 14(21), pages 1-23, October.
    3. He, Wenjian & Cheng, Yu & Lin, Ying & Zhang, Hongxiao, 2022. "Microeconomic effects of designating National Forest Cities: Evidence from China's publicly traded manufacturing companies," Forest Policy and Economics, Elsevier, vol. 136(C).
    4. Sugiawan, Yogi & Kurniawan, Robi & Managi, Shunsuke, 2019. "Are carbon dioxide emission reductions compatible with sustainable well-being?," Applied Energy, Elsevier, vol. 242(C), pages 1-11.
    5. James, Nick & Menzies, Max, 2022. "Global and regional changes in carbon dioxide emissions: 1970–2019," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    7. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    8. Lucas Bretschger & Evgenij Komarov, 2023. "All Inclusive Climate Policy in a Growing Economy: The Role of Human Health," CER-ETH Economics working paper series 23/384, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    9. Jean C. Bikomeye & Caitlin S. Rublee & Kirsten M. M. Beyer, 2021. "Positive Externalities of Climate Change Mitigation and Adaptation for Human Health: A Review and Conceptual Framework for Public Health Research," IJERPH, MDPI, vol. 18(5), pages 1-29, March.
    10. Chang, Shiyan & Yang, Xi & Zheng, Haotian & Wang, Shuxiao & Zhang, Xiliang, 2020. "Air quality and health co-benefits of China's national emission trading system," Applied Energy, Elsevier, vol. 261(C).
    11. Donner, Herman & Kulander, Maria, 2024. "Analyzing the relationship between housing and social engagement among the elderly," Working Paper Series 24/1, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance.
    12. Zhang, Wen-Wen & Zhao, Bin & Ding, Dian & Sharp, Basil & Gu, Yu & Xu, Shi-Chun & Xing, Jia & Wang, Shu-Xiao & Liou, Kuo-Nan & Rao, Lan-Lan, 2021. "Co-benefits of subnationally differentiated carbon pricing policies in China: Alleviation of heavy PM2.5 pollution and improvement in environmental equity," Energy Policy, Elsevier, vol. 149(C).
    13. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:4:d:10.1038_s41558-018-0108-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.