IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v15y2025i6d10.1038_s41558-025-02327-9.html
   My bibliography  Save this article

Risks of unavoidable impacts on forests at 1.5 °C with and without overshoot

Author

Listed:
  • Gregory Munday

    (Met Office Hadley Centre)

  • Chris D. Jones

    (Met Office Hadley Centre
    University of Bristol)

  • Norman J. Steinert

    (Bjerknes Centre for Climate Research
    CICERO Center for International Climate Research)

  • Camilla Mathison

    (Met Office Hadley Centre
    University of Leeds)

  • Eleanor J. Burke

    (Met Office Hadley Centre)

  • Chris Smith

    (Met Office Hadley Centre
    International Institute for Applied Systems Analysis (IIASA)
    Vrije Universiteit Brussel)

  • Chris Huntingford

    (UK Centre for Ecology and Hydrology)

  • Rebecca M. Varney

    (University of Exeter)

  • Andy J. Wiltshire

    (Met Office Hadley Centre
    University of Exeter)

Abstract

With global warming heading for 1.5 °C, understanding the risks of exceeding this threshold is increasingly urgent. Impacts on human and natural systems are expected to increase with further warming and some may be irreversible. Yet impacts under policy-relevant stabilization or overshoot pathways have not been well quantified. Here we report the risks of irreversible impacts on forest ecosystems, such as Amazon forest loss and high-latitude woody encroachment, under three scenarios that explore low levels of exceedance and overshoot beyond 1.5 °C. Long-term forest loss is mitigated by reducing global temperatures below 1.5 °C. The proximity of dieback risk thresholds to the bounds of the Paris Agreement global warming levels underscores the need for urgent action to mitigate climate change—and the risks of irreversible loss of an important ecosystem.

Suggested Citation

  • Gregory Munday & Chris D. Jones & Norman J. Steinert & Camilla Mathison & Eleanor J. Burke & Chris Smith & Chris Huntingford & Rebecca M. Varney & Andy J. Wiltshire, 2025. "Risks of unavoidable impacts on forests at 1.5 °C with and without overshoot," Nature Climate Change, Nature, vol. 15(6), pages 650-655, June.
  • Handle: RePEc:nat:natcli:v:15:y:2025:i:6:d:10.1038_s41558-025-02327-9
    DOI: 10.1038/s41558-025-02327-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-025-02327-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-025-02327-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2022. "Author Correction: Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    2. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    3. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Weipeng & Aryanpur, Vahid & Deane, Paul & Daly, Hannah E., 2025. "Negative emissions technologies in energy system models and mitigation scenarios - a systematic review," Applied Energy, Elsevier, vol. 380(C).
    2. Ghaboulian Zare, Sara & Amirmoeini, Kamyar & Bahn, Olivier & Baker, Ryan C. & Mousseau, Normand & Neshat, Najmeh & Trépanier, Martin & Wang, Qianpu, 2025. "The role of hydrogen in integrated assessment models: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    3. Draeger, Rebecca & Cunha, Bruno S.L. & Müller-Casseres, Eduardo & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2022. "Stranded crude oil resources and just transition: Why do crude oil quality, climate ambitions and land-use emissions matter," Energy, Elsevier, vol. 255(C).
    4. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    5. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    6. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    7. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    8. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    9. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    10. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    11. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    12. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    13. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    17. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    18. Jun U. Shepard & Bas J. van Ruijven & Behnam Zakeri, 2022. "Impacts of Trade Friction and Climate Policy on Global Energy Trade Network," Energies, MDPI, vol. 15(17), pages 1-21, August.
    19. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    20. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:15:y:2025:i:6:d:10.1038_s41558-025-02327-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.