IDEAS home Printed from https://ideas.repec.org/a/mup/actaun/actaun_2014062061373.html
   My bibliography  Save this article

Impact of Trading Volume on Prediction of Stock Market Development

Author

Listed:
  • Rudolf Plachý

    (Department of Statistics, Faculty of Economics and Management, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Prague 6,Czech Republic)

Abstract

The paper focuses on the influence of trading volume on quality of prediction of stock market development. The main objective of this article is to assess the influence of stock trading volume level on quality of prediction with use of technical analysis. The research was applied on stocks included in the S & P 500 index. Based on average daily trading volume, three aggregate indexes were constructed.The dynamics of index return volatility was modeled by GARCH-class models. GARCH(1,1), GJR and EGARCH models were estimated for each time series. The in-sample evidence indicated that the return volatility of the indexes can be characterized by significant persistence and asymmetric effects. The best estimate of each model was produced for the index of stocks with the highest average trading volume.However the result could differ based on the observed period, the volatility structure of the examined data supports the idea that influential investors respond to various shocks in the market primarily by closing or opening their largest position.The importance of the level of trading volume for the prediction of financial time series development was shown in the paper. This finding could help generate such volatility structure of time series which would allow to explain development of the time series by various models with better results.

Suggested Citation

  • Rudolf Plachý, 2014. "Impact of Trading Volume on Prediction of Stock Market Development," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 62(6), pages 1373-1380.
  • Handle: RePEc:mup:actaun:actaun_2014062061373
    DOI: 10.11118/actaun201462061373
    as

    Download full text from publisher

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201462061373.html
    Download Restriction: free of charge

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201462061373.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.11118/actaun201462061373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    4. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    5. Tianyi Wang & Zhuo Huang, 2012. "The Relationship between Volatility and Trading Volume in the Chinese Stock Market: A Volatility Decomposition Perspective," Annals of Economics and Finance, Society for AEF, vol. 13(1), pages 211-236, May.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Chen, Shiu-Sheng, 2012. "Revisiting the empirical linkages between stock returns and trading volume," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1781-1788.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    2. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    3. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    4. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    5. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    6. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    7. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    8. Pramod Kumar Naik & Puja Padhi, 2015. "Stock Market Volatility and Equity Trading Volume: Empirical Examination from Brazil, Russia, India and China (BRIC)," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 28-45, October.
    9. Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
    10. Sabiruzzaman, Md. & Monimul Huq, Md. & Beg, Rabiul Alam & Anwar, Sajid, 2010. "Modeling and forecasting trading volume index: GARCH versus TGARCH approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 141-145, May.
    11. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    12. Raúl De Jesús Gutiérrez & Reyna Vergara González & Miguel A. Díaz Carreño, 2015. "Predicción de la volatilidad en el mercado del petróleo mexicano ante la presencia de efectos asimétricos," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, March.
    13. Hayashida, Minoru & Ono, Hiroyuki, 2016. "Tax reforms and stock return volatility: The case of Japan," Journal of Asian Economics, Elsevier, vol. 45(C), pages 1-14.
    14. Ching-Chun Wei, 2009. "An Empirical Analysis of the Taiwan Institutional Trading Volume Volatility Spillover on Stock Market Index Return," Economics Bulletin, AccessEcon, vol. 29(2), pages 1264-1275.
    15. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    16. Seulki Chung, 2024. "Modelling and Forecasting Energy Market Volatility Using GARCH and Machine Learning Approach," Papers 2405.19849, arXiv.org.
    17. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    18. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    19. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    20. Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mup:actaun:actaun_2014062061373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://mendelu.cz/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.