IDEAS home Printed from https://ideas.repec.org/a/mnb/finrev/v24y2025i3p52-72.html
   My bibliography  Save this article

Inflation and Uncertainty: Evidence from GARCH-MIDAS-in-Mean Modelling

Author

Listed:
  • Chaoyi Chen

    (Magyar Nemzeti Bank, Budapest Metropolitan University)

  • Tamas Barko

    (Quoniam Asset Management GmbH, Budapest Metropolitan University)

  • Oliver Nagy

    (Eotvos Lorand University)

Abstract

We revisit the relationship between inflation and inflation uncertainty using a novel GARCH-MIDAS-in-Mean approach, which allows for the decomposition of inflation uncertainty into short-term and time-varying long-term components. We test our model on UK data. Our findings indicate that macroeconomic and financial variables significantly influence the long-term component of inflation uncertainty. By enabling long-term uncertainty to vary over time through MIDAS filtering, we show that the evidence for past inflation raising short-run uncertainty weakens compared to results that assume a constant long-term inflation uncertainty component. However, our results support the Cukierman-Meltzer hypothesis, indicating that the impact of inflation uncertainty on inflation becomes more robust and pronounced when longer samples are used, although this effect is sensitive to structural breaks, such as the VAT cut and the Covid-19 pandemic. Additionally, we find no evidence that changes in inflation feed back into short-run uncertainty.

Suggested Citation

  • Chaoyi Chen & Tamas Barko & Oliver Nagy, 2025. "Inflation and Uncertainty: Evidence from GARCH-MIDAS-in-Mean Modelling," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 24(3), pages 52-72.
  • Handle: RePEc:mnb:finrev:v:24:y:2025:i:3:p:52-72
    as

    Download full text from publisher

    File URL: https://hitelintezetiszemle.mnb.hu/sw/static/file/fer-24-3-st3-chen-barko-nagy.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    2. Daal, Elton & Naka, Atsuyuki & Sanchez, Benito, 2005. "Re-examining inflation and inflation uncertainty in developed and emerging countries," Economics Letters, Elsevier, vol. 89(2), pages 180-186, November.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    4. Reiner Martin & Piroska Nagy Mohacsi, 2024. "Fighting Inflation within the Monetary Union and Outside: The Case of the Visegrad 4," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 23(4), pages 102-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conrad, Christian & Hartmann, Matthias, 2014. "Cross-sectional evidence on the relation between monetary policy, macroeconomic conditions and low-frequency inflation uncertainty," Working Papers 0574, University of Heidelberg, Department of Economics.
    2. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    3. Levent, Korap, 2009. "Enflasyon ve enflasyon belirsizliği ilişkisi için G7 ekonomileri üzerine bir inceleme [An investigation for the inflation and inflation uncertainty relationship upon the G7 economies]," MPRA Paper 19478, University Library of Munich, Germany.
    4. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    5. Bhar, Ramprasad & Mallik, Girijasankar, 2010. "Inflation, inflation uncertainty and output growth in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5503-5510.
    6. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    7. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    8. Kuang‐Liang Chang & Chi‐Wei He, 2010. "Does The Magnitude Of The Effect Of Inflation Uncertainty On Output Growth Depend On The Level Of Inflation?," Manchester School, University of Manchester, vol. 78(2), pages 126-148, March.
    9. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    10. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    11. Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
    12. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.
    13. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    14. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
    15. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    16. Brümmer, Bernhard, 2021. "Preisvolatilität auf Agrarmärkten," IAMO Discussion Papers 310089, Institute of Agricultural Development in Transition Economies (IAMO).
    17. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    18. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    19. Kejin Wu & Sayar Karmakar & Rangan Gupta, 2023. "GARCHX-NoVaS: A Model-free Approach to Incorporate Exogenous Variables," Papers 2308.13346, arXiv.org, revised Sep 2024.
    20. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnb:finrev:v:24:y:2025:i:3:p:52-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Morvay Endre The email address of this maintainer does not seem to be valid anymore. Please ask Morvay Endre to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/mnbgvhu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.