IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/278.html
   My bibliography  Save this article

Opcióárazás numerikus módszerekkel
[Option pricing by numerical methods]

Author

Listed:
  • Benedek, Gábor

Abstract

Napjaink egyik legnagyobb érdeklődést kiváltó gazdaságelméleti területe a tőzsde. Az a felismerés ugyanis, hogy különböző értékpapírok árfolyamainak mozgását jól le lehet írni egy sztochasztikus folyamattal, megnyitotta az utat a tőzsde, illetve különböző értékpapírok és származékaik árfolyamainak matematikai modellezése irányába. A korábbi elméleti fizikai kutatások eredményei pedig szinte tálcán kínálták a bonyolultabb differenciálegyenletek megoldásait, amelyeket a tőzsdén tapasztalhatókhoz hasonló sztochasztikus folyamatokból nyertek; igaz, teljesen más mögöttes tartalommal. Különösen nagy figyelmet kaptak az opciók árazására vonatkozó modellek. A jelen tanulmány szintén az opciók árazásának problémáját vizsgálja. Kiindulópontja a BlackScholes-formula, amelyben matematikai megoldást kapunk bizonyos szigorú feltételek mellett az opciók árazására (BlackScholes [1973]). A tanulmány célja, hogy megvizsgálja, mi a következménye ezen szigorú feltételek feloldásának. Elsősorban egy feltétel a tranzakciós költségek hiányának feloldását vizsgáljuk, de eljárást adunk a többi feltétel feloldására is, így téve reálisabbá a modellt.

Suggested Citation

  • Benedek, Gábor, 1999. "Opcióárazás numerikus módszerekkel [Option pricing by numerical methods]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 905-929.
  • Handle: RePEc:ksa:szemle:278
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=278
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Athanassios N. Avramidis & James R. Wilson, 1996. "Integrated Variance Reduction Strategies for Simulation," Operations Research, INFORMS, vol. 44(2), pages 327-346, April.
    4. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    5. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    6. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    8. Barry L. Nelson, 1990. "Control Variate Remedies," Operations Research, INFORMS, vol. 38(6), pages 974-992, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedek, Gábor, 2000. "Evolúciós alkalmazások előrejelzési modellekben I [Evolutionary applications in forecasting models, Part I]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 988-1007.
    2. Benedek, Gábor, 2001. "Evolúciós alkalmazások előrejelzési modellekben II [Evolutionary applications in forecasting models, Part II]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 18-30.
    3. Nagy, Tamás, 2013. "A villamos erőművek szén-dioxid-kibocsátásának modellezése reálopciók segítségével [Modelling of the carbon dioxide emissions of a power plant, using real options]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 318-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    2. Chuang-Chang Chang & Jun-Biao Lin, 2010. "The valuation of multivariate contingent claims under transformed trinomial approaches," Review of Quantitative Finance and Accounting, Springer, vol. 34(1), pages 23-36, January.
    3. Frédéric Magoulès & Guillaume Gbikpi-Benissan & Qinmeng Zou, 2018. "Asynchronous Iterations of Parareal Algorithm for Option Pricing Models," Mathematics, MDPI, vol. 6(4), pages 1-18, March.
    4. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    5. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    6. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    7. Barr, Kanlaya Jintanakul, 2009. "The implied volatility bias and option smile: is there a simple explanation?," ISU General Staff Papers 200901010800002026, Iowa State University, Department of Economics.
    8. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    9. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    10. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    11. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    12. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    15. Bettina Freitag & Lukas Häfner & Verena Pfeuffer & Jochen Übelhör, 2020. "Evaluating investments in flexible on-demand production capacity: a real options approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 133-161, April.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.