IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1182.html
   My bibliography  Save this article

Biztosítók kockázatdiverzifikációja
[Risk diversification of insurers]

Author

Listed:
  • Szüle, Borbála

Abstract

A biztosítók működését általában több homogén részállományból összetevődő heterogén biztosítási állomány jellemzi. A részállományok alkotta biztosítási portfólió esetében a kockázatdiverzifikáció vizsgálható a teljes állományra, illetve a részállományokra összesített kockázatok különbségeként, és elemezhető a kockázat és hozam kapcsolata alapján is. A biztosítók működésének főbb sajátosságait tartalmazó modellben azt mutatjuk meg, hogy a biztosítási portfólió esetében tapasztalható kockázatdiverzifikációs hatások milyen mértékben hasonlítanak a klasszikusnak számító, befektetésekkel foglalkozó Markowitz-féle portfólióelmélet által leírtakra. Modellünk alapján megállapítható: számos hasonlóságon túl a biztosító működési sajátosságai következtében a hatékony biztosítási portfóliók, illetve az optimális befektetési arányok meghatározása egyedi tulajdonságokkal jellemezhető. Journal of Economic Literature (JEL) kód: G11, G22.

Suggested Citation

  • Szüle, Borbála, 2010. "Biztosítók kockázatdiverzifikációja [Risk diversification of insurers]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 634-651.
  • Handle: RePEc:ksa:szemle:1182
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1182
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casper G. de Vries & Gennady Samorodnitsky & Bjørn N. Jorgensen & Sarma Mandira & Jon Danielsson, 2005. "Subadditivity Re–Examined: the Case for Value-at-Risk," FMG Discussion Papers dp549, Financial Markets Group.
    2. Mesfioui, Mhamed & Quessy, Jean-Francois, 2005. "Bounds on the value-at-risk for the sum of possibly dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 135-151, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    2. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    3. Oliver Kley & Claudia Kluppelberg & Gesine Reinert, 2014. "Risk in a large claims insurance market with bipartite graph structure," Papers 1410.8671, arXiv.org, revised Nov 2015.
    4. Kratz , Marie, 2013. "There is a VaR Beyond Usual Approximations," ESSEC Working Papers WP1317, ESSEC Research Center, ESSEC Business School.
    5. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    6. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Marie Kratz, 2013. "There is a VaR Beyond Usual Approximations," Working Papers hal-00880258, HAL.
    8. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    9. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    10. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    11. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    12. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    13. Georg Mainik & Ludger Rüschendorf, 2010. "On optimal portfolio diversification with respect to extreme risks," Finance and Stochastics, Springer, vol. 14(4), pages 593-623, December.
    14. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    15. J. D. Opdyke, 2014. "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," Papers 1406.0389, arXiv.org, revised Nov 2014.
    16. Marie Kratz, 2013. "There is a VaR beyond usual approximations," Papers 1311.0270, arXiv.org.
    17. Casper G. de Vries & Mandira Sarma & Bjørn N. Jorgensen & Jean-Pierre Zigrand & Jon Danielsson, 2006. "Consistent Measures of Risk," FMG Discussion Papers dp565, Financial Markets Group.
    18. Adrián F. Rossignolo, 2019. "Basel IV A gloomy future for Expected Shortfall risk models. Evidence from the Mexican Stock Market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(PNEA), pages 559-582, Agosto 20.
    19. Charles-Olivier Amedee-Manesme & Fabrice Barthélémy, 2012. "Cornish-Fisher expansion for real estate value at risk," ERES eres2012_044, European Real Estate Society (ERES).
    20. J. Dhaene & R. J. A. Laeven & S. Vanduffel & G. Darkiewicz & M. J. Goovaerts, 2008. "Can a Coherent Risk Measure Be Too Subadditive?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 365-386, June.

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.