IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v52y2025i4d10.1007_s11116-023-10456-3.html
   My bibliography  Save this article

Assessment of the activity scheduling optimization method using real travel data

Author

Listed:
  • Bladimir Toaza

    (Budapest University of Technology and Economics)

  • Domokos Esztergár-Kiss

    (Budapest University of Technology and Economics)

Abstract

New mobility services are appearing with the support of technological developments. Part of them is related to activity scheduling of individuals and the optimization of their travel patterns. A novel method called Activity Chain Optimization (ACO) is an application of the Traveling Salesman Problem with Time Windows (TSP-TW) extended with additional assumptions about temporal and spatial flexibility of the activities, where the travelers can optimize the total travel time of their daily activity schedule. This paper aims to apply the ACO method and evaluate its performance using a real-world household survey dataset, where activity chains of up to 15 activities during a day are considered. The optimization is developed using the genetic algorithm (GA) metaheuristic with suitable parameters selected and the branch-and-bound exact algorithm. The findings demonstrate that the branch-and-bound solution exhibits superior performance for smaller activity chain sizes, while the GA outperforms computationally for activity chains with a size from nine. However, the GA found the solutions in only 2% of the time compared to the branch-and-bound method. By applying the ACO method, relevant time savings and emission reduction can be achieved for travelers, when realizing daily activities.

Suggested Citation

  • Bladimir Toaza & Domokos Esztergár-Kiss, 2025. "Assessment of the activity scheduling optimization method using real travel data," Transportation, Springer, vol. 52(4), pages 1319-1348, August.
  • Handle: RePEc:kap:transp:v:52:y:2025:i:4:d:10.1007_s11116-023-10456-3
    DOI: 10.1007/s11116-023-10456-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-023-10456-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-023-10456-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed Haroun Sabry & Jamal Benhra & Abdelkabir Bacha, 2018. "ASIF Approach to Solve the Green Traveling Salesman Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(1), pages 81-95, January.
    2. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2020. "A Method for the Optimization of Daily Activity Chains Including Electric Vehicles," Energies, MDPI, vol. 13(4), pages 1-21, February.
    3. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    4. Carlos Oliveira Cruz & Joaquim Miranda Sarmento, 2020. "“Mobility as a Service” Platforms: A Critical Path towards Increasing the Sustainability of Transportation Systems," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    5. Domokos Esztergár-Kiss & Zoltán Rózsa & Tamás Tettamanti, 2018. "Extensions of the Activity Chain Optimization Method," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(2), pages 125-142, April.
    6. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
    7. Panagiotis Georgakis & Adel Almohammad & Efthimios Bothos & Babis Magoutas & Kostantina Arnaoutaki & Gregoris Mentzas, 2020. "Heuristic-Based Journey Planner for Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    8. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).
    9. Thomas Kirschstein & Christian Bierwirth, 2018. "The selective Traveling Salesman Problem with emission allocation rules," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 97-124, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2023. "Heuristic time-dependent personal scheduling problem with electric vehicles," Transportation, Springer, vol. 50(5), pages 2009-2048, October.
    2. Patrick Manser & Tom Haering & Tim Hillel & Janody Pougala & Rico Krueger & Michel Bierlaire, 2024. "Estimating flexibility preferences to resolve temporal scheduling conflicts in activity-based modelling," Transportation, Springer, vol. 51(2), pages 501-528, April.
    3. José Gerardo Carrillo-González & Guillermo López-Maldonado & Juan Lopez-Sauceda & Francisco Perez-Martinez, 2023. "Method for Selecting the Vehicles That Can Enter a Street Network to Maintain the Speed on Links above a Speed Threshold," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    4. Jairo Ortega & János Tóth & Tamás Péter & Sarbast Moslem, 2020. "An Integrated Model of Park-And-Ride Facilities for Sustainable Urban Mobility," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    5. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    6. Fernando Camacho & Carlos Oliveira Cruz, 2022. "Toll road sector in Brazil: Regulation by contract and recent innovations," Competition and Regulation in Network Industries, , vol. 23(2), pages 135-152, June.
    7. Mohammad Hesam Hafezi & Lei Liu & Hugh Millward, 2019. "A time-use activity-pattern recognition model for activity-based travel demand modeling," Transportation, Springer, vol. 46(4), pages 1369-1394, August.
    8. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    9. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    10. Fanyu Wang & Junyou Zhang & Shufeng Wang & Sixian Li & Wenlan Hou, 2020. "Analysis of Driving Behavior Based on Dynamic Changes of Personality States," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    11. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    12. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    13. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    14. Yuhei MIYAUCHI & Kentaro NAKAJIMA & Stephen J. REDDING, 2025. "The Economics of Spatial Mobility: Theory and Evidence Using Smartphone Data," Discussion papers 25048, Research Institute of Economy, Trade and Industry (RIETI).
    15. Zhao, Juanjuan & Ren, Huan & Gu, Yan & Pan, Haojie, 2023. "Relationships between the residential environment, travel attitude and behaviour among knowledge workers: The role of job types," Journal of Transport Geography, Elsevier, vol. 106(C).
    16. Luo, Lichen & Parady, Giancarlos & Takami, Kiyoshi, 2024. "Evaluating the impact of automated vehicles on residential location distribution using activity-based accessibility: A case study of Japanese regional areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    17. Cong Qi & Jonas De Vos & Tao Tao & Linxuan Shi & Xiucheng Guo, 2025. "Trip chaining patterns of tourists: a real-world case study," Transportation, Springer, vol. 52(1), pages 239-261, February.
    18. Auld, Joshua & Mohammadian, Abolfazl (Kouros) & Doherty, Sean T., 2009. "Modeling activity conflict resolution strategies using scheduling process data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 386-400, May.
    19. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    20. Harsh Shah & Andre L. Carrel & Huyen T. K. Le, 2024. "Impacts of teleworking and online shopping on travel: a tour-based analysis," Transportation, Springer, vol. 51(1), pages 99-127, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:4:d:10.1007_s11116-023-10456-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.