IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v50y2023i1d10.1007_s11116-021-10241-0.html
   My bibliography  Save this article

Impact of self-parking autonomous vehicles on urban traffic congestion

Author

Listed:
  • Sajjad Shafiei

    (Swinburne University of Technology
    Data61| CSIRO)

  • Ziyuan Gu

    (Southeast University)

  • Hanna Grzybowska

    (Data61| CSIRO)

  • Chen Cai

    (Data61| CSIRO)

Abstract

The advent of autonomous vehicles (AVs) is likely to introduce new mobility experiences for travelers. In particular, AVs would allow travelers to get off at the destinations and then drive themselves elsewhere to park rather than cruise for parking or park at a location with a high parking fee. The self-parking capability is likely to increase the utility of private-owned AVs (PAVs) and make this mobility option more attractive than human-driven vehicles. The present study investigates the dynamics of travelers shifting to PAVs from other transport modes and its negative impact on road traffic congestion. To this end, we propose an agent-based demand model which considers different travel cost components depending on crucial travel attributes such as trip purpose and activity duration. The estimated demand is then fed into a mesoscopic traffic simulation model to examine the resulting road traffic conditions. As charging private vehicles for the congestion they cause is an effective tool for demand management and congestion alleviation, we also integrate a distance-based pricing scheme into the overall modeling framework to investigate its impact on mode choice and transport network performance. A case study is conducted in Melbourne, Australia to demonstrate the proposed methodology. The results indicate that the distance-based pricing scheme can effectively limit the usage of PAVs and reduce traffic congestion, especially in the city center and peripheral suburbs.

Suggested Citation

  • Sajjad Shafiei & Ziyuan Gu & Hanna Grzybowska & Chen Cai, 2023. "Impact of self-parking autonomous vehicles on urban traffic congestion," Transportation, Springer, vol. 50(1), pages 183-203, February.
  • Handle: RePEc:kap:transp:v:50:y:2023:i:1:d:10.1007_s11116-021-10241-0
    DOI: 10.1007/s11116-021-10241-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10241-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10241-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 64-88.
    2. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    3. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    4. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    5. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    6. Anable, Jillian & Gatersleben, Birgitta, 2005. "All work and no play? The role of instrumental and affective factors in work and leisure journeys by different travel modes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 163-181.
    7. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    8. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    9. Gardner, Lauren M. & Duell, Melissa & Waller, S. Travis, 2013. "A framework for evaluating the role of electric vehicles in transportation network infrastructure under travel demand variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 76-90.
    10. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    11. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    12. Zakharenko, Roman, 2016. "Self-driving cars will change cities," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 26-37.
    13. Fábio Duarte & Carlo Ratti, 2018. "The Impact of Autonomous Vehicles on Cities: A Review," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(4), pages 3-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    2. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    3. Winter, Konstanze & Cats, Oded & Martens, Karel & van Arem, Bart, 2021. "Parking space for shared automated vehicles: How less can be more," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 61-77.
    4. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    5. Tscharaktschiew, Stefan & Reimann, Felix, 2021. "On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives," Transport Policy, Elsevier, vol. 110(C), pages 499-516.
    6. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    7. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    8. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    9. Ostermeijer, Francis & Koster, Hans RA. & van Ommeren, Jos, 2019. "Residential parking costs and car ownership: Implications for parking policy and automated vehicles," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 276-288.
    10. Faber, Koen & van Lierop, Dea, 2020. "How will older adults use automated vehicles? Assessing the role of AVs in overcoming perceived mobility barriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 353-363.
    11. Taolüe Chen & Chao Sun, 2023. "An Optimization Design of Hybrid Parking Lots in an Automated Environment," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    12. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    13. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    14. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    15. Bahrami, Sina & Roorda, Matthew, 2022. "Autonomous vehicle parking policies: A case study of the City of Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 283-296.
    16. Milakis, Dimitris & Kroesen, Maarten & van Wee, Bert, 2018. "Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment," Journal of Transport Geography, Elsevier, vol. 68(C), pages 142-148.
    17. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    18. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    19. Shatanawi, Mohamad & Alatawneh, Anas & Mészáros, Ferenc, 2022. "Implications of static and dynamic road pricing strategies in the era of autonomous and shared autonomous vehicles using simulation-based dynamic traffic assignment: The case of Budapest," Research in Transportation Economics, Elsevier, vol. 95(C).
    20. You Kong & Jihong Ou & Longfei Chen & Fengchun Yang & Bo Yu, 2023. "The Environmental Impacts of Automated Vehicles on Parking: A Systematic Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:1:d:10.1007_s11116-021-10241-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.