The multi-objective network design problem using minimizing externalities as objectives: comparison of a genetic algorithm and simulated annealing framework
Author
Abstract
Suggested Citation
DOI: 10.1007/s11116-016-9738-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cantarella, G.E. & Pavone, G. & Vitetta, A., 2006. "Heuristics for urban road network design: Lane layout and signal settings," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1682-1695, December.
- Boyce, D. E. & Janson, B. N., 1980. "A discrete transportation network design problem with combined trip distribution and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 147-154.
- Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
- Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
- Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
- Poorzahedy, Hossain & Turnquist, Mark A., 1982. "Approximate algorithms for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 16(1), pages 45-55, February.
- Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
- Drezner, Zvi & Wesolowsky, George O., 2003. "Network design: selection and design of links and facility location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 241-256, March.
- Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
- Larry J. Leblanc, 1975. "An Algorithm for the Discrete Network Design Problem," Transportation Science, INFORMS, vol. 9(3), pages 183-199, August.
- Terry L. Friesz & Hsun-Jung Cho & Nihal J. Mehta & Roger L. Tobin & G. Anandalingam, 1992. "A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints," Transportation Science, INFORMS, vol. 26(1), pages 18-26, February.
- Poorzahedy, Hossain & Rouhani, Omid M., 2007. "Hybrid meta-heuristic algorithms for solving network design problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 578-596, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiang Zhang & S. Travis Waller, 2019. "Implications of link-based equity objectives on transportation network design problem," Transportation, Springer, vol. 46(5), pages 1559-1589, October.
- Wei Huang & Guangming Xu & Hong K. Lo, 2020. "Pareto-Optimal Sustainable Transportation Network Design under Spatial Queuing," Networks and Spatial Economics, Springer, vol. 20(3), pages 637-673, September.
- Di Pace, Roberta & Storani, Facundo & Guarnaccia, Claudio & de Luca, Stefano, 2023. "Signal setting design to reduce noise emissions in a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
- Siying Zhu & Feng Zhu, 2020. "Multi-objective bike-way network design problem with space–time accessibility constraint," Transportation, Springer, vol. 47(5), pages 2479-2503, October.
- Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
- Alba Martínez-López & Manuel Chica, 2020. "Joint Optimization of Routes and Container Fleets to Design Sustainable Intermodal Chains in Chile," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
- Hong Ki An & Muhammad Awais Javeed & Gimok Bae & Nimra Zubair & Ahmed Sayed M. Metwally & Patrizia Bocchetta & Fan Na & Muhammad Sufyan Javed, 2022. "Optimized Intersection Signal Timing: An Intelligent Approach-Based Study for Sustainable Models," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
- Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
- Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
- Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
- Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
- Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
- Di, Xuan & Ma, Rui & Liu, Henry X. & Ban, Xuegang (Jeff), 2018. "A link-node reformulation of ridesharing user equilibrium with network design," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 230-255.
- Khooban, Zohreh & Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y., 2015. "Mixed network design using hybrid scatter search," European Journal of Operational Research, Elsevier, vol. 247(3), pages 699-710.
- Karimi Dehnavi, Hadi & Rezvan, Mohammad Taghi & Shirmohammadli, Abdolmatin & Vallée, Dirk, 2013. "A solution for urban road selection and construction problem using simulation and goal programming—Case study of the city of Isfahan," Transport Policy, Elsevier, vol. 29(C), pages 46-53.
- Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
- Hamid Farvaresh & Mohammad Sepehri, 2013. "A Branch and Bound Algorithm for Bi-level Discrete Network Design Problem," Networks and Spatial Economics, Springer, vol. 13(1), pages 67-106, March.
- Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
- Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
- Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
- Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
- Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
- Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
- Dung-Ying Lin & Ampol Karoonsoontawong & S. Waller, 2011. "A Dantzig-Wolfe Decomposition Based Heuristic Scheme for Bi-level Dynamic Network Design Problem," Networks and Spatial Economics, Springer, vol. 11(1), pages 101-126, March.
- Bar-Gera, Hillel & Hellman, Fredrik & Patriksson, Michael, 2013. "Computational precision of traffic equilibria sensitivities in automatic network design and road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 485-500.
- Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
More about this item
Keywords
Multi-objective network design problem; Externalities; Genetic algorithm; Simulated annealing; Accessibility; Traffic safety; Emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:45:y:2018:i:2:d:10.1007_s11116-016-9738-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.