IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v32y2007i3p133-156.html
   My bibliography  Save this article

The science commons in health research: structure, function, and value

Author

Listed:
  • Robert Cook-Deegan

    ()

Abstract

The “science commons,” knowledge that is widely accessible at low or no cost, is a uniquely important input to scientific advance and cumulative technological innovation. It is primarily, although not exclusively, funded by government and nonprofit sources. Much of it is produced at academic research centers, although some academic science is proprietary and some privately funded R&D enters the science commons. Science in general aspires to Mertonian norms of openness, universality, objectivity, and critical inquiry. The science commons diverges from proprietary science primarily in being open and being very broadly available. These features make the science commons particularly valuable for advancing knowledge, for training innovators who will ultimately work in both public and private sectors, and in providing a common stock of knowledge upon which all players—both public and private—can draw readily. Open science plays two important roles that proprietary R&D cannot: it enables practical benefits even in the absence of profitable markets for goods and services, and its lays a shared foundation for subsequent private R&D. The history of genomics in the period 1992–2004, covering two periods when genomic startup firms attracted significant private R&D investment, illustrates these features of how a science commons contributes value. Commercial interest in genomics was intense during this period. Fierce competition between private sector and public sector genomics programs was highly visible. Seemingly anomalous behavior, such as private firms funding “open science,” can be explained by unusual business dynamics between established firms wanting to preserve a robust science commons to prevent startup firms from limiting established firms’ freedom to operate. Deliberate policies to create and protect a large science commons were pursued by nonprofit and government funders of genomics research, such as the Wellcome Trust and National Institutes of Health. These policies were crucial to keeping genomic data and research tools widely available at low cost. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Robert Cook-Deegan, 2007. "The science commons in health research: structure, function, and value," The Journal of Technology Transfer, Springer, vol. 32(3), pages 133-156, June.
  • Handle: RePEc:kap:jtecht:v:32:y:2007:i:3:p:133-156
    DOI: 10.1007/s10961-006-9016-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10961-006-9016-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam B. Jaffe & Josh Lerner, 2006. "Innovation and its Discontents," NBER Chapters,in: Innovation Policy and the Economy, Volume 6, pages 27-66 National Bureau of Economic Research, Inc.
    2. Narin, Francis & Olivastro, Dominic, 1992. "Status report: Linkage between technology and science," Research Policy, Elsevier, vol. 21(3), pages 237-249, June.
    3. Cockburn, Iain M & Henderson, Rebecca M, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul A. David & J. Stanley Metcalfe, 2010. "‘Only Connect’: Academic–Business Research Collaborations and the Formation of Ecologies of Innovation," Chapters,in: The Capitalization of Knowledge, chapter 2 Edward Elgar Publishing.
    2. Barham, Bradford L. & Foltz, Jeremy D., 2007. "Patenting, Commercialization, and US Academic Research in the 21st Century: The Resilience of Basic, Federally-Funded Open Science," Staff Paper Series 513, University of Wisconsin, Agricultural and Applied Economics.
    3. Perkmann, Markus & Schildt, Henri, 2015. "Open data partnerships between firms and universities: The role of boundary organizations," Research Policy, Elsevier, vol. 44(5), pages 1133-1143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:32:y:2007:i:3:p:133-156. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.