IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v27y2025i2d10.1007_s10109-025-00457-4.html
   My bibliography  Save this article

Ecological inference for relative risks, with application to infrequent mental health events

Author

Listed:
  • Peter Congdon

    (Queen Mary University of London)

Abstract

Mental health outcomes may show wide contrasts in incidence or prevalence between ethnic or socio-economic groups, often for relatively infrequent events. To gauge such relativities, one ideally seeks age standardised comparisons, given that ethnic groups may differ in age structure, and that the events themselves often show wide age disparities in risk. It is also advantageous to provide a geographically disaggregated (e.g. neighbourhood) perspective on relative risk differences, with sampling densities (e.g. Poisson) appropriate to possibly infrequent events. Often only total disease counts (with no socio-demographic disaggregation) are available for neighbourhoods, though data on ethnic or social mix (e.g. Census data) are available from other sources. We consider in this paper a novel ecological inference method which can use such information, and which furthermore takes account of the impacts of neighbourhood age structure on health outcomes. We consider a case study to estimate age standardised relative risks for psychosis by neighbourhood and ethnicity. The analysis is for 6856 English neighbourhoods.

Suggested Citation

  • Peter Congdon, 2025. "Ecological inference for relative risks, with application to infrequent mental health events," Journal of Geographical Systems, Springer, vol. 27(2), pages 197-227, April.
  • Handle: RePEc:kap:jgeosy:v:27:y:2025:i:2:d:10.1007_s10109-025-00457-4
    DOI: 10.1007/s10109-025-00457-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-025-00457-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-025-00457-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. John W. Seaman & John W. Seaman & James D. Stamey, 2012. "Hidden Dangers of Specifying Noninformative Priors," The American Statistician, Taylor & Francis Journals, vol. 66(2), pages 77-84, May.
    2. Nazroo, J.Y., 2003. "The structuring of ethnic inequalities in health: Economic position, racial discrimination, and racism," American Journal of Public Health, American Public Health Association, vol. 93(2), pages 277-284.
    3. Schwartz, S., 1994. "The fallacy of the ecological fallacy: The potential misuse of a concept and the consequences," American Journal of Public Health, American Public Health Association, vol. 84(5), pages 819-824.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    5. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    6. Gary King & Ori Rosen & Martin A. Tanner, 1999. "Binomial-Beta Hierarchical Models for Ecological Inference," Sociological Methods & Research, , vol. 28(1), pages 61-90, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    3. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    4. Rob Eisinga, 2009. "The beta‐binomial convolution model for 2×2 tables with missing cell counts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 24-42, February.
    5. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    6. Carolina Plescia & Lorenzo De Sio, 2018. "An evaluation of the performance and suitability of R × C methods for ecological inference with known true values," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 669-683, March.
    7. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    8. Katarina Lokar & Tina Zagar & Vesna Zadnik, 2019. "Estimation of the Ecological Fallacy in the Geographical Analysis of the Association of Socio-Economic Deprivation and Cancer Incidence," IJERPH, MDPI, vol. 16(3), pages 1-18, January.
    9. Peter Congdon, 1997. "Multilevel and Clustering Analysis of Health Outcomes in Small Areas," European Journal of Population, Springer;European Association for Population Studies, vol. 13(4), pages 305-338, December.
    10. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    11. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2019. "Area-Level Walkability and the Geographic Distribution of High Body Mass in Sydney, Australia: A Spatial Analysis Using the 45 and Up Study," IJERPH, MDPI, vol. 16(4), pages 1-29, February.
    12. Sebastien J-P. A. Haneuse & Jonathan C. Wakefield, 2007. "Hierarchical Models for Combining Ecological and Case–Control Data," Biometrics, The International Biometric Society, vol. 63(1), pages 128-136, March.
    13. Kevin D. Hart & Philip G. Peters, 2008. "Cultures of Claiming: Local Variation in Malpractice Claim Frequency," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 5(1), pages 77-107, March.
    14. Irizar, Patricia & Kapadia, Dharmi & Amele, Sarah & Bécares, Laia & Divall, Pip & Katikireddi, Srinivasa Vittal & Kibuchi, Eliud & Kneale, Dylan & McCabe, Ronan & Nazroo, James & Nellums, Laura B. & T, 2023. "Pathways to ethnic inequalities in COVID-19 health outcomes in the United Kingdom: A systematic map," Social Science & Medicine, Elsevier, vol. 329(C).
    15. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    16. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    17. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    18. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    19. McNeill, Lorna Haughton & Kreuter, Matthew W. & Subramanian, S.V., 2006. "Social Environment and Physical activity: A review of concepts and evidence," Social Science & Medicine, Elsevier, vol. 63(4), pages 1011-1022, August.
    20. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:27:y:2025:i:2:d:10.1007_s10109-025-00457-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.