IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v25y2023i4d10.1007_s10109-023-00426-9.html
   My bibliography  Save this article

Correcting for informative sampling in spatial covariance estimation and kriging predictions

Author

Listed:
  • Erin M. Schliep

    (University of Missouri)

  • Christopher K. Wikle

    (University of Missouri)

  • Ranadeep Daw

    (University of Missouri)

Abstract

Informative sampling designs can impact spatial prediction, or kriging, in two important ways. First, the sampling design can bias spatial covariance parameter estimation, which in turn can bias spatial kriging estimates. Second, even with unbiased estimates of the spatial covariance parameters, since the kriging variance is a function of the observation locations, these estimates will vary based on the sample and overestimate the population-based estimates. In this work, we develop a weighted composite likelihood approach to improve spatial covariance parameter estimation under informative sampling designs. Then, given these parameter estimates, we propose three approaches to quantify the effects of the sampling design on the variance estimates in spatial prediction. These results can be used to make informed decisions for population-based inference. We illustrate our approaches using a comprehensive simulation study. Then, we apply our methods to perform spatial prediction using real estate data across a metropolitan area.

Suggested Citation

  • Erin M. Schliep & Christopher K. Wikle & Ranadeep Daw, 2023. "Correcting for informative sampling in spatial covariance estimation and kriging predictions," Journal of Geographical Systems, Springer, vol. 25(4), pages 587-613, October.
  • Handle: RePEc:kap:jgeosy:v:25:y:2023:i:4:d:10.1007_s10109-023-00426-9
    DOI: 10.1007/s10109-023-00426-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-023-00426-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-023-00426-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Lai Ping & Stoyan, D., 2008. "Modelling marked point patterns by intensity-marked Cox processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1194-1199, August.
    2. Alan E. Gelfand & Sujit K. Sahu & David M. Holland, 2012. "On the effect of preferential sampling in spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 565-578, November.
    3. Moreno Bevilacqua & Carlo Gaetan & Jorge Mateu & Emilio Porcu, 2012. "Estimating Space and Space-Time Covariance Functions for Large Data Sets: A Weighted Composite Likelihood Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 268-280, March.
    4. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    5. D. Pati & B. J. Reich & D. B. Dunson, 2011. "Bayesian geostatistical modelling with informative sampling locations," Biometrika, Biometrika Trust, vol. 98(1), pages 35-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.
    2. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    3. Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.
    4. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    5. Johnston, Alison & Moran, Nick & Musgrove, Andy & Fink, Daniel & Baillie, Stephen R., 2020. "Estimating species distributions from spatially biased citizen science data," Ecological Modelling, Elsevier, vol. 422(C).
    6. Samira Zahmatkesh & Mohsen Mohammadzadeh, 2021. "Bayesian prediction of spatial data with non-ignorable missingness," Statistical Papers, Springer, vol. 62(5), pages 2247-2268, October.
    7. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    8. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    9. repec:esx:essedp:767 is not listed on IDEAS
    10. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    11. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    12. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    13. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    14. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    15. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    16. Duncan Lee & Claire Ferguson & E. Marian Scott, 2011. "Constructing representative air quality indicators with measures of uncertainty," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 109-126, January.
    17. Diego Giuliani & Giuseppe Arbia & Giuseppe Espa, 2014. "Weighting Ripley’s K-Function to Account for the Firm Dimension in the Analysis of Spatial Concentration," International Regional Science Review, , vol. 37(3), pages 251-272, July.
    18. Moreno Bevilacqua & Christian Caamaño-Carrillo & Reinaldo B. Arellano-Valle & Camilo Gómez, 2022. "A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 644-674, September.
    19. Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.
    20. Alexander Malinowski & Martin Schlather & Zhengjun Zhang, 2016. "Intrinsically weighted means and non-ergodic marked point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 1-24, February.
    21. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.

    More about this item

    Keywords

    Composite likelihood; Semivariogram estimation; Preferential sampling; Pseudo-likelihood;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:25:y:2023:i:4:d:10.1007_s10109-023-00426-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.