IDEAS home Printed from
   My bibliography  Save this article

Intrinsically weighted means and non-ergodic marked point processes


  • Alexander Malinowski


  • Martin Schlather


  • Zhengjun Zhang



Mean marks form a versatile toolbox in the analysis of marked point processes (MPPs). For ergodic processes, their definition is straightforward and practical application is well established. In the stationary non-ergodic case, though, different definitions of mark averages are possible and might be practically relevant. In this paper, the classical definition of mean marks is compared to a set of new characteristics for non-ergodic MPPs, which stand out due to the weighting of ergodicity classes. Another weighting can be introduced on the single-point level via weights given by the marks themselves. These intrinsically given weights and the weighting of ergodicity classes are closely related to each other meaning that for suitable choices of weights, a mean mark characteristic can be expressed in either way. Estimators for the different definitions of mean marks are discussed and their consistency and asymptotic normality are shown under certain conditions. Copyright The Institute of Statistical Mathematics, Tokyo 2016

Suggested Citation

  • Alexander Malinowski & Martin Schlather & Zhengjun Zhang, 2016. "Intrinsically weighted means and non-ergodic marked point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 1-24, February.
  • Handle: RePEc:spr:aistmt:v:68:y:2016:i:1:p:1-24
    DOI: 10.1007/s10463-014-0485-6

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    2. Giada Adelfio & Frederic Schoenberg, 2009. "Point process diagnostics based on weighted second-order statistics and their asymptotic properties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 929-948, December.
    3. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    4. Martin Schlather & Paulo J. Ribeiro & Peter J. Diggle, 2004. "Detecting dependence between marks and locations of marked point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 79-93, February.
    5. M. Lieshout, 2006. "A J-Function for Marked Point Patterns," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 235-259, June.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:68:y:2016:i:1:p:1-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.