IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.06339.html
   My bibliography  Save this paper

Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization

Author

Listed:
  • Kosuke Tatsumura
  • Ryo Hidaka
  • Jun Nakayama
  • Tomoya Kashimata
  • Masaya Yamasaki

Abstract

Financial portfolio construction problems are often formulated as quadratic and discrete (combinatorial) optimization that belong to the nondeterministic polynomial time (NP)-hard class in computational complexity theory. Ising machines are hardware devices that work in quantum-mechanical/quantum-inspired principles for quickly solving NP-hard optimization problems, which potentially enable making trading decisions based on NP-hard optimization in the time constraints for high-speed trading strategies. Here we report a real-time stock trading system that determines long(buying)/short(selling) positions through NP-hard portfolio optimization for improving the Sharpe ratio using an embedded Ising machine based on a quantum-inspired algorithm called simulated bifurcation. The Ising machine selects a balanced (delta-neutral) group of stocks from an $N$-stock universe according to an objective function involving maximizing instantaneous expected returns defined as deviations from volume-weighted average prices and minimizing the summation of statistical correlation factors (for diversification). It has been demonstrated in the Tokyo Stock Exchange that the trading strategy based on NP-hard portfolio optimization for $N$=128 is executable with the FPGA (field-programmable gate array)-based trading system with a response latency of 164 $\mu$s.

Suggested Citation

  • Kosuke Tatsumura & Ryo Hidaka & Jun Nakayama & Tomoya Kashimata & Masaya Yamasaki, 2023. "Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization," Papers 2307.06339, arXiv.org.
  • Handle: RePEc:arx:papers:2307.06339
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.06339
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    2. Backus, David K & Gregory, Allan W & Telmer, Chris I, 1993. "Accounting for Forward Rates in Markets for Foreign Currency," Journal of Finance, American Finance Association, vol. 48(5), pages 1887-1908, December.
    3. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    4. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    5. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    6. repec:bla:jfinan:v:43:y:1988:i:1:p:97-112 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    2. Frino, Alex & Mollica, Vito & Webb, Robert I. & Zhang, Shunquan, 2017. "The impact of latency sensitive trading on high frequency arbitrage opportunities," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 91-102.
    3. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    5. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    6. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    7. Geetu Aggarwal & Navdeep Aggarwal, 2021. "Risk-adjusted Returns from Statistical Arbitrage Opportunities in Indian Stock Futures Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(1), pages 79-99, March.
    8. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    9. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    10. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    11. Alessia Naccarato & Andrea Pierini & Giovanna Ferraro, 2021. "Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment," Annals of Operations Research, Springer, vol. 299(1), pages 81-99, April.
    12. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    13. Khizar Qureshi & Tauhid Zaman, 2024. "Pairs Trading Using a Novel Graphical Matching Approach," Papers 2403.07998, arXiv.org.
    14. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    15. Bruno Biais & Fany Declerck & Sophie Moinas, 2016. "Who supplies liquidity, how and when?," BIS Working Papers 563, Bank for International Settlements.
    16. Agarwal, Vikas & Fung, William H. & Loon, Yee Cheng & Naik, Narayan Y., 2004. "Risk and return in convertible arbitrage: Evidence from the convertible bond market," CFR Working Papers 04-03, University of Cologne, Centre for Financial Research (CFR).
    17. Goergen, Marc & Renneboog, Luc & Zhao, Yang, 2019. "Insider trading and networked directors," Journal of Corporate Finance, Elsevier, vol. 56(C), pages 152-175.
    18. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    19. Yang Gao & Stephen Satchell & Nandini Srivastava, 2020. "Styles through a convergent/divergent lens: the curious case of ESG," Journal of Asset Management, Palgrave Macmillan, vol. 21(1), pages 4-12, February.
    20. NIdhi Aggarwal & Venkatesh Panchapagesan & Susan Thomas, 2022. "When is the Order to Trade Ratio fee effective?," Working Papers 8, xKDR.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.06339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.