IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.06339.html
   My bibliography  Save this paper

Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization

Author

Listed:
  • Kosuke Tatsumura
  • Ryo Hidaka
  • Jun Nakayama
  • Tomoya Kashimata
  • Masaya Yamasaki

Abstract

Financial portfolio construction problems are often formulated as quadratic and discrete (combinatorial) optimization that belong to the nondeterministic polynomial time (NP)-hard class in computational complexity theory. Ising machines are hardware devices that work in quantum-mechanical/quantum-inspired principles for quickly solving NP-hard optimization problems, which potentially enable making trading decisions based on NP-hard optimization in the time constraints for high-speed trading strategies. Here we report a real-time stock trading system that determines long(buying)/short(selling) positions through NP-hard portfolio optimization for improving the Sharpe ratio using an embedded Ising machine based on a quantum-inspired algorithm called simulated bifurcation. The Ising machine selects a balanced (delta-neutral) group of stocks from an $N$-stock universe according to an objective function involving maximizing instantaneous expected returns defined as deviations from volume-weighted average prices and minimizing the summation of statistical correlation factors (for diversification). It has been demonstrated in the Tokyo Stock Exchange that the trading strategy based on NP-hard portfolio optimization for $N$=128 is executable with the FPGA (field-programmable gate array)-based trading system with a response latency of 164 $\mu$s.

Suggested Citation

  • Kosuke Tatsumura & Ryo Hidaka & Jun Nakayama & Tomoya Kashimata & Masaya Yamasaki, 2023. "Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization," Papers 2307.06339, arXiv.org.
  • Handle: RePEc:arx:papers:2307.06339
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.06339
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    2. Backus, David K & Gregory, Allan W & Telmer, Chris I, 1993. "Accounting for Forward Rates in Markets for Foreign Currency," Journal of Finance, American Finance Association, vol. 48(5), pages 1887-1908, December.
    3. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    4. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    5. Malceniece, Laura & Malcenieks, Kārlis & Putniņš, Tālis J., 2019. "High frequency trading and comovement in financial markets," Journal of Financial Economics, Elsevier, vol. 134(2), pages 381-399.
    6. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    7. repec:bla:jfinan:v:43:y:1988:i:1:p:97-112 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    2. Breckenfelder, Johannes, 2024. "Competition among high-frequency traders and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 166(C).
    3. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    4. Ibikunle, Gbenga & Rzayev, Khaladdin, 2023. "Volatility and dark trading: Evidence from the Covid-19 pandemic," The British Accounting Review, Elsevier, vol. 55(4).
    5. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    6. Aliyev, Nihad & Huseynov, Fariz & Rzayev, Khaladdin, 2022. "Algorithmic trading and investment-to-price sensitivity," LSE Research Online Documents on Economics 118844, London School of Economics and Political Science, LSE Library.
    7. Frino, Alex & Mollica, Vito & Webb, Robert I. & Zhang, Shunquan, 2017. "The impact of latency sensitive trading on high frequency arbitrage opportunities," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 91-102.
    8. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Li, Zeming & Sakkas, Athanasios & Urquhart, Andrew, 2022. "Intraday time series momentum: Global evidence and links to market characteristics," Journal of Financial Markets, Elsevier, vol. 57(C).
    10. Jasmin Gider & Simon N. M. Schmickler & Christian Westheide, 2021. "High-Frequency Trading and Price Informativeness," CRC TR 224 Discussion Paper Series crctr224_2021_257, University of Bonn and University of Mannheim, Germany.
    11. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    12. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: evidence from Frankfurt-London microwave," LSE Research Online Documents on Economics 119989, London School of Economics and Political Science, LSE Library.
    13. Anagnostidis, Panagiotis & Fontaine, Patrice, 2020. "Liquidity commonality and high frequency trading: Evidence from the French stock market," International Review of Financial Analysis, Elsevier, vol. 69(C).
    14. Ramos, Henrique Pinto & Perlin, Marcelo Scherer, 2020. "Does algorithmic trading harm liquidity? Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    15. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Ma, Rui & Anderson, Hamish D. & Marshall, Ben R., 2018. "Market volatility, liquidity shocks, and stock returns: Worldwide evidence," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 164-199.
    17. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    18. Gbenga Ibikunle & Davide Mare & Yuxin Sun, 2020. "The paradoxical effects of market fragmentation on adverse selection risk and market efficiency," The European Journal of Finance, Taylor & Francis Journals, vol. 26(14), pages 1439-1461, September.
    19. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    20. Nimalendran, Mahendrarajah & Rzayev, Khaladdin & Sagade, Satchit, 2022. "High-frequency trading in the stock market and the costs of option market making," LSE Research Online Documents on Economics 118885, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.06339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.