IDEAS home Printed from
   My bibliography  Save this article

Quantifying and explaining accessibility with application to the 2009 H1N1 vaccination campaign


  • Jessica L. Heier Stamm

    (Kansas State University)

  • Nicoleta Serban

    (Georgia Institute of Technology)

  • Julie Swann

    (Georgia Institute of Technology)

  • Pascale Wortley

    (Centers for Disease Control and Prevention)


Accessibility and equity across populations are important measures in public health. This paper is specifically concerned with potential spatial accessibility, or the opportunity to receive care as moderated by geographic factors, and with horizontal equity, or fairness across populations regardless of need. Both accessibility and equity were goals of the 2009 vaccination campaign for the novel H1N1a influenza virus, including during the period when demand for vaccine exceeded supply. Distribution system design can influence equity and accessibility at the local level. We develop a general methodology that integrates optimization, game theory, and spatial statistics to measure potential spatial accessibility across a network, where we quantify spatial accessibility by travel distance and scarcity. We estimate and make inference on local (census-tract level) associations between accessibility and geographic, socioeconomic, and health care infrastructure factors to identify potential inequities in vaccine accessibility during the 2009 H1N1 vaccination campaign in the U.S. We find that there were inequities in access to vaccine at the local level and that these were associated with factors including population density and health care infrastructure. Our methodology for measuring and explaining accessibility leads to policy recommendations for federal, state, and local public health officials. The spatial-specific results inform the development of equitable distribution plans for future public health efforts.

Suggested Citation

  • Jessica L. Heier Stamm & Nicoleta Serban & Julie Swann & Pascale Wortley, 2017. "Quantifying and explaining accessibility with application to the 2009 H1N1 vaccination campaign," Health Care Management Science, Springer, vol. 20(1), pages 76-93, March.
  • Handle: RePEc:kap:hcarem:v:20:y:2017:i:1:d:10.1007_s10729-015-9338-y
    DOI: 10.1007/s10729-015-9338-y

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    2. E. S. Savas, 1978. "On Equity in Providing Public Services," Management Science, INFORMS, vol. 24(8), pages 800-808, April.
    3. Uscher-Pines, L. & Maurer, J. & Harris, K.M., 2011. "Racial and ethnic disparities in uptake and location of vaccination for 2009-H1N1 and seasonal influenza," American Journal of Public Health, American Public Health Association, vol. 101(7), pages 1252-1255.
    4. Yingxing Li & David Ruppert, 2008. "On the asymptotics of penalized splines," Biometrika, Biometrika Trust, vol. 95(2), pages 415-436.
    5. Fleurbaey, Marc & Schokkaert, Erik, 2009. "Unfair inequalities in health and health care," Journal of Health Economics, Elsevier, vol. 28(1), pages 73-90, January.
    6. Golany, Boaz & Kaplan, Edward H. & Marmur, Abraham & Rothblum, Uriel G., 2009. "Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 198-208, January.
    7. Knight, Vincent A. & Harper, Paul R., 2013. "Selfish routing in public services," European Journal of Operational Research, Elsevier, vol. 230(1), pages 122-132.
    8. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    9. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    10. Kaplan, E.H. & Merson, M.H., 2002. "Allocating HIV-prevention resources: Balancing efficiency and equity," American Journal of Public Health, American Public Health Association, vol. 92(12), pages 1905-1907.
    11. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    12. DeBruin, D. & Liaschenko, J. & Marshall, M.F., 2012. "Social justice in pandemic preparedness," American Journal of Public Health, American Public Health Association, vol. 102(4), pages 586-591.
    13. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)


    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Policy responses > Vaccination


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Luke Muggy & Jessica L. Heier Stamm, 2020. "Decentralized beneficiary behavior in humanitarian supply chains: models, performance bounds, and coordination mechanisms," Annals of Operations Research, Springer, vol. 284(1), pages 333-365, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    2. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
    4. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    5. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    6. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    7. Lee, Wang-Sheng & McKinnish, Terra, 2019. "Locus of control and marital satisfaction: Couple perspectives using Australian data," Journal of Economic Psychology, Elsevier, vol. 74(C).
    8. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    10. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    11. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992,, revised Mar 2018.
    12. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    13. Seebens, Holger, 2009. "Child Welfare and Old-Age Security in Female Headed Households in Tanzania," IZA Discussion Papers 3929, Institute of Labor Economics (IZA).
    14. Arūnas P. Verbyla & Joanne Faveri & John D. Wilkie & Tom Lewis, 2018. "Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 478-508, December.
    15. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    16. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    17. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    18. Clark, Andrew E. & Etilé, Fabrice, 2011. "Happy house: Spousal weight and individual well-being," Journal of Health Economics, Elsevier, vol. 30(5), pages 1124-1136.
    19. Marta Blangiardo & Monica Pirani & Lauren Kanapka & Anna Hansell & Gary Fuller, 2019. "A hierarchical modelling approach to assess multi pollutant effects in time-series studies," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    20. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:20:y:2017:i:1:d:10.1007_s10729-015-9338-y. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.