IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v66y2025i2d10.1007_s10614-024-10791-2.html
   My bibliography  Save this article

Financial Fraud Transaction Prediction Approach Based on Global Enhanced GCN and Bidirectional LSTM

Author

Listed:
  • Yimo Chen

    (Wenzhou Vocational College of Science and Technology)

  • Mengyi Du

    (Lishui Vocational and Technical College)

Abstract

Money laundering is an act taken by criminals to cover up the nature and source of illegal gains. As money laundering data shows a complex time dependence, there is also a complex spatial correlation between different transactions. For this reason, we propose a financial fraud transaction prediction method based on global enhanced graph convolution and Bidirectional LSTM, called GEGCN-BiLSTM. First, BiLSTM is used to capture the time dependence in money laundering transactions. It not only considers the previous historical data, but also considers the information of subsequent time steps. Then, GEGCN is used to further mine the spatial global context relevance between different transactions. On each time stamp, the output information of GEGCN will be used as the input of BiLSTM to integrate time dependence and spatial dependence. The experimental results show that GEGCN-BiLSTM outperforms other comparison algorithms in terms of effectiveness and significance, providing a powerful tool for market transaction supervision.

Suggested Citation

  • Yimo Chen & Mengyi Du, 2025. "Financial Fraud Transaction Prediction Approach Based on Global Enhanced GCN and Bidirectional LSTM," Computational Economics, Springer;Society for Computational Economics, vol. 66(2), pages 1747-1766, August.
  • Handle: RePEc:kap:compec:v:66:y:2025:i:2:d:10.1007_s10614-024-10791-2
    DOI: 10.1007/s10614-024-10791-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10791-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10791-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Raffaella Barone & Donato Masciandaro, 2019. "Cryptocurrency or usury? Crime and alternative money laundering techniques," European Journal of Law and Economics, Springer, vol. 47(2), pages 233-254, April.
    2. Zhang, Zhendong & Ye, Lei & Qin, Hui & Liu, Yongqi & Wang, Chao & Yu, Xiang & Yin, Xingli & Li, Jie, 2019. "Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression," Applied Energy, Elsevier, vol. 247(C), pages 270-284.
    3. Singh, Kishore & Best, Peter, 2019. "Anti-Money Laundering: Using data visualization to identify suspicious activity," International Journal of Accounting Information Systems, Elsevier, vol. 34(C), pages 1-1.
    4. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhimani, Alnoor & Hausken, Kjell & Arif, Sameen, 2022. "Do national development factors affect cryptocurrency adoption?," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    2. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    3. Daniel Mutemi Kiraithe, 2025. "Impact of Using Short-Term Trading Strategies on Securities' Returns: Evidence from Djia Securities Market," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 12(10), pages 2945-2962, October.
    4. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    5. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    6. Yang Dexiang & Mu Shengdong & Yunjie Liu & Gu Jijian & Lien Chaolung, 2023. "An Improved Deep-Learning-Based Financial Market Forecasting Model in the Digital Economy," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    7. Xiaohua Zeng & Changzhou Liang & Qian Yang & Fei Wang & Jieping Cai, 2025. "Enhancing stock index prediction: A hybrid LSTM-PSO model for improved forecasting accuracy," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-31, January.
    8. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    9. Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
    10. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    11. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    12. Qun Cheng & Zhaonan Zhang & Yanwei Wang & Lidong Zhang, 2025. "A Review of Distributed Energy Systems: Technologies, Classification, and Applications," Sustainability, MDPI, vol. 17(4), pages 1-31, February.
    13. Hyungjun Park & Min Kyu Sim & Dong Gu Choi, 2019. "An intelligent financial portfolio trading strategy using deep Q-learning," Papers 1907.03665, arXiv.org, revised Nov 2019.
    14. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    15. Hu, Xiao & Kang, Siqin & Ren, Long & Zhu, Shaokeng, 2024. "Interactive preference analysis: A reinforcement learning framework," European Journal of Operational Research, Elsevier, vol. 319(3), pages 983-998.
    16. Wang, Jianzhou & Lv, Mengzheng & Wang, Shuai & Gao, Jialu & Zhao, Yang & Wang, Qiangqiang, 2024. "Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    17. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    18. Gergana Taneva-Angelova & Stefan Raychev & Galina Ilieva, 2025. "A Framework for Gold Price Prediction Combining Classical and Intelligent Methods with Financial, Economic, and Sentiment Data Fusion," IJFS, MDPI, vol. 13(2), pages 1-25, June.
    19. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    20. Zeynep Cipiloglu Yildiz & Selim Baha Yildiz, 2022. "A portfolio construction framework using LSTM‐based stock markets forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2356-2366, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:2:d:10.1007_s10614-024-10791-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.