Forecasting Bitcoin Volatility and Value-at-Risk Using Stacking Machine Learning Models With Intraday Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-024-10713-2
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- Nedved, Martin & Kristoufek, Ladislav, 2023. "Safe havens for Bitcoin," Finance Research Letters, Elsevier, vol. 51(C).
- Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
- Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
- Hao Sun & Bo Yu, 2020. "Forecasting Financial Returns Volatility: A GARCH-SVR Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 451-471, February.
- Ze Shen & Qing Wan & David J. Leatham, 2021. "Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN," JRFM, MDPI, vol. 14(7), pages 1-18, July.
- Ramona Serrano Bautista & José Antonio Núñez Mora, 2021. "Value-at-risk predictive performance: a comparison between the CaViaR and GARCH models for the MILA and ASEAN-5 stock markets," Journal of Economics, Finance and Administrative Science, Emerald Group Publishing Limited, vol. 26(52), pages 197-221, November.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Theophilos Papadimitriou & Periklis Gogas & Athanasios Fotios Athanasiou, 2022. "Forecasting Bitcoin Spikes: A GARCH-SVM Approach," Forecasting, MDPI, vol. 4(4), pages 1-15, September.
- Elsayed, Ahmed H. & Gozgor, Giray & Lau, Chi Keung Marco, 2022. "Risk transmissions between bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties," International Review of Financial Analysis, Elsevier, vol. 81(C).
- José Almeida & Tiago Cruz Gonçalves, 2022. "A Systematic Literature Review of Volatility and Risk Management on Cryptocurrency Investment: A Methodological Point of View," Risks, MDPI, vol. 10(5), pages 1-18, May.
- Wilkens, Sascha, 2019. "Machine learning in risk measurement: Gaussian process regression for value-at-risk and expected shortfall," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 12(4), pages 374-383, September.
- Reschenhofer, Erhard & Mangat, Manveer Kaur & Stark, Thomas, 2020. "Volatility forecasts, proxies and loss functions," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 133-153.
- Zhifeng Dai & Tingyu Li & Mi Yang, 2022. "Forecasting stock return volatility: The role of shrinkage approaches in a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 980-996, August.
- Man Wang & Yihan Cheng, 2022. "Forecasting value at risk and expected shortfall using high‐frequency data of domestic and international stock markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1595-1607, December.
- Emiliano S Pagnotta, 2022. "Decentralizing Money: Bitcoin Prices and Blockchain Security," The Review of Financial Studies, Society for Financial Studies, vol. 35(2), pages 866-907.
- Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
- Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
- Arkorful, Gideon Bruce & Chen, Haiqiang & Gu, Ming & Liu, Xiaoqun, 2023. "What can we learn from the convenience yield of Bitcoin? Evidence from the COVID-19 crisis," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 141-153.
- Vuković, Darko B. & Frömmel, Michael & Vigne, Samuel A. & Zinovev, Vyacheslav, 2025. "Spillovers between cryptocurrencies and financial markets in a global framework," Journal of International Money and Finance, Elsevier, vol. 150(C).
- Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.
- Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
- Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
- Jens Klose, 2022. "Comparing cryptocurrencies and gold - a system-GARCH-approach," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 653-679, December.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Jin, Daxiang & Yu, Jize, 2023. "Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty," Finance Research Letters, Elsevier, vol. 58(PC).
- Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
- Fiszeder, Piotr & Małecka, Marta & Molnár, Peter, 2024. "Robust estimation of the range-based GARCH model: Forecasting volatility, value at risk and expected shortfall of cryptocurrencies," Economic Modelling, Elsevier, vol. 141(C).
- Caporale, Guglielmo Maria & Zekokh, Timur, 2019.
"Modelling volatility of cryptocurrencies using Markov-Switching GARCH models,"
Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
- Guglielmo Maria Caporale & Timur Zekokh, 2018. "Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models," CESifo Working Paper Series 7167, CESifo.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Skander Slim & Ibrahim Tabche & Yosra Koubaa & Mohamed Osman & Andreas Karathanasopoulos, 2023. "Forecasting realized volatility of Bitcoin: The informative role of price duration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1909-1929, November.
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2019.
"Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
- Ke, Rui & Yang, Luyao & Tan, Changchun, 2022. "Forecasting tail risk for Bitcoin: A dynamic peak over threshold approach," Finance Research Letters, Elsevier, vol. 49(C).
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Darko Vukovic & Moinak Maiti & Zoran Grubisic & Elena M. Grigorieva & Michael Frömmel, 2021.
"COVID-19 Pandemic: Is the Crypto Market a Safe Haven? The Impact of the First Wave,"
Sustainability, MDPI, vol. 13(15), pages 1-17, July.
- Darko Vukovic & Moinak Maiti & Zoran Grubisic & Elena M. Grigorieva & Michael Frömmel, 2021. "Correction: Vukovic et al. COVID-19 Pandemic: Is the Crypto Market a Safe Haven? The Impact of the First Wave. Sustainability 2021, 13 , 8578," Sustainability, MDPI, vol. 13(22), pages 1-3, November.
- Lu, Xinjie & Ma, Feng & Li, Haibo & Wang, Jianqiong, 2023. "INE oil futures volatility prediction: Exchange rates or international oil futures volatility?," Energy Economics, Elsevier, vol. 126(C).
- Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10713-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/kap/compec/v66y2025i1d10.1007_s10614-024-10713-2.html