IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v046i07.html
   My bibliography  Save this article

Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS

Author

Listed:
  • Bergmeir, Christoph
  • Benítez, José M.

Abstract

Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a) encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b) accessibility of all of the SNNS algorithmic functionality from R using a low-level interface, and (c) a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNS file formats.

Suggested Citation

  • Bergmeir, Christoph & Benítez, José M., 2012. "Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 46(i07).
  • Handle: RePEc:jss:jstsof:v:046:i07
    DOI: http://hdl.handle.net/10.18637/jss.v046.i07
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v046i07/v46i07.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v046i07/RSNNS_0.4-3.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v046i07/v46i07.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v046.i07?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    2. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    3. Guallar, Carles & Delgado, Maximino & Diogène, Jorge & Fernández-Tejedor, Margarita, 2016. "Artificial neural network approach to population dynamics of harmful algal blooms in Alfacs Bay (NW Mediterranean): Case studies of Karlodinium and Pseudo-nitzschia," Ecological Modelling, Elsevier, vol. 338(C), pages 37-50.
    4. Guopeng Jiang & Miles Grafton & Diane Pearson & Mike Bretherton & Allister Holmes, 2019. "Integration of Precision Farming Data and Spatial Statistical Modelling to Interpret Field-Scale Maize Productivity," Agriculture, MDPI, vol. 9(11), pages 1-22, November.
    5. Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Kraay,Aart C. & Spencer,Phoebe Girouard & Wang,Dieter, 2020. "Predicting Food Crises," Policy Research Working Paper Series 9412, The World Bank.
    6. Riza, Lala Septem & Bergmeir, Christoph & Herrera, Francisco & Benítez, José M., 2015. "frbs: Fuzzy Rule-Based Systems for Classification and Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i06).
    7. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    8. Severinsen, A. & Myrland, Ø., 2022. "ShinyRBase: Near real-time energy saving models using reactive programming," Applied Energy, Elsevier, vol. 325(C).
    9. Suellen Teixeira Zavadzki de Pauli & Mariana Kleina & Wagner Hugo Bonat, 2020. "Comparing Artificial Neural Network Architectures for Brazilian Stock Market Prediction," Annals of Data Science, Springer, vol. 7(4), pages 613-628, December.
    10. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    11. Youngmin Seo & Sungwon Kim & Vijay Singh, 2015. "Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2189-2204, May.
    12. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
    13. Kaliba, Aloyce R. & Mushi, Richard J. & Gongwe, Anne G. & Mazvimavi, Kizito, 2020. "A typology of adopters and nonadopters of improved sorghum seeds in Tanzania: A deep learning neural network approach," World Development, Elsevier, vol. 127(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:046:i07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.