IDEAS home Printed from
   My bibliography  Save this article

Validating multiple-period density-forecasting models


  • Kevin Dowd

    (Nottingham University Business School, Nottingham, UK)


This paper examines the problem of how to validate multiple-period density forecasting models. Such models are more difficult to validate than their single-period equivalents, because consecutive observations are subject to common shocks that undermine i.i.d. The paper examines various solutions to this problem, and proposes a new solution based on the application of standard tests to a resample that is constructed to be i.i.d. It suggests that this solution is superior to alternatives, and presents results indicating that tests based on the i.i.d. resample approach have good power. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Kevin Dowd, 2007. "Validating multiple-period density-forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 251-270.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:4:p:251-270 DOI: 10.1002/for.1025

    Download full text from publisher

    File URL:
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the "t"-distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Efstathios Paparoditis & Dimitris N. Politis, 2002. "The tapered block bootstrap for general statistics from stationary sequences," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 131-148, June.
    5. Kenneth F. Wallis, 2004. "An Assessment of Bank of England and National Institute Inflation Forecast Uncertainties," National Institute Economic Review, National Institute of Economic and Social Research, vol. 189(1), pages 64-71, July.
    6. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:4:p:251-270. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.