IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2017-4-3.html
   My bibliography  Save this article

Dynamic Pricing Strategies for Perishable Product in a Competitive Multi-Agent Retailers Market

Author

Listed:
  • Wenchong Chen
  • Hongwei Liu
  • Dan Xu

Abstract

Due to the fierce competition in the marketplace for perishable products, retailers have to use pricing strategies to attract customers. Traditional pricing strategies adjust products’ prices according to retailers’ current situations (e.g. Cost-plus pricing strategy, Value-based pricing strategy and Inventory-sensitive pricing strategy). However, many retailers lack the perception for customer preferences and an understanding of the competitive environment. This paper explores a price Q-learning mechanism for perishable products that considers uncertain demand and customer preferences in a competitive multi-agent retailer market (a model-free environment). In the proposed simulation model, agents imitate the behavior of consumers and retailers. Four potential influencing factors (competition, customer preferences, uncertain demand, perishable characteristics) are constructed in the pricing decisions. All retailer agents adjust their products’ prices over a finite sales horizon to maximize expected revenues. A retailer agent adjusts its price according to the Q-learning mechanism, while others adapt traditional pricing strategies. Shortage is allowed while backlog is not. The simulation results show that the dynamic pricing strategy via the Q-learning mechanism can be used for pricing perishable products in a competitive environment, as it can produce more revenue for retailers. Further, the paper investigates how an optimal pricing strategy is influenced by customer preferences, customer demand, retailer pricing parameters and the learning parameters of Q-learning. Based on our results, we provide pricing implications for retailers pursuing higher revenues.

Suggested Citation

  • Wenchong Chen & Hongwei Liu & Dan Xu, 2018. "Dynamic Pricing Strategies for Perishable Product in a Competitive Multi-Agent Retailers Market," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-12.
  • Handle: RePEc:jas:jasssj:2017-4-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/21/2/12/12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ilker Arslan & Eugenio Caverzasi & Mauro Gallegati & Alper Duman, 2016. "Long Term Impacts of Bank Behavior on Financial Stability. an Agent Based Modeling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-11.
    2. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conor B. Hamill & Raad Khraishi & Simona Gherghel & Jerrard Lawrence & Salvatore Mercuri & Ramin Okhrati & Greig A. Cowan, 2023. "Agent-based Modelling of Credit Card Promotions," Papers 2311.01901, arXiv.org, revised Nov 2023.
    2. Wasfi Alrawabdeh, 2022. "Seasonal balancing of revenue and demand in hotel industry: the case of Dubai City," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(1), pages 36-49, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    2. Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
    3. Valentina Y. Guleva & Klavdiya O. Bochenina & Maria V. Skvorcova & Alexander V. Boukhanovsky, 2017. "A Simulation Tool for Exploring the Evolution of Temporal Interbank Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-15.
    4. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    5. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    6. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    7. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    8. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    9. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).
    11. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    12. Zhang, Yunchao & Islam, Md Monirul & Sun, Zeyi & Yang, Sijia & Dagli, Cihan & Xiong, Haoyi, 2018. "Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program," International Journal of Production Economics, Elsevier, vol. 206(C), pages 261-267.
    13. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Harun Or Rashid Howlader & Akito Nakadomari & Tomonobu Senjyu, 2023. "Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies," Energies, MDPI, vol. 16(10), pages 1-25, May.
    14. Sadeghi, Delnia & Ahmadi, Seyed Ehsan & Amiri, Nima & Satinder, & Marzband, Mousa & Abusorrah, Abdullah & Rawa, Muhyaddin, 2022. "Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings," Energy, Elsevier, vol. 253(C).
    15. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.
    16. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    17. Li, Lanlan & Gong, Chengzhu & Wang, Deyun & Zhu, Kejun, 2013. "Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou," Energy, Elsevier, vol. 52(C), pages 37-43.
    18. Hu, Ming-Che & Lu, Su-Ying & Chen, Yen-Haw, 2016. "Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty," Applied Energy, Elsevier, vol. 182(C), pages 500-506.
    19. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    20. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2018. "An improved incentive-based demand response program in day-ahead and intra-day electricity markets," Energy, Elsevier, vol. 155(C), pages 205-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2017-4-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.