IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp437-449.html
   My bibliography  Save this article

User-expected price-based demand response algorithm for a home-to-grid system

Author

Listed:
  • Li, Xiao Hui
  • Hong, Seung Ho

Abstract

Demand response algorithms can cut peak energy use, driving energy conservation and enabling renewable energy sources, as well as reducing greenhouse-gas emissions. The use of these technologies is becoming increasingly popular, especially in smart-grid scenarios. We describe a home-to-grid demand response algorithm, which introduces a UEP (“user-expected price”) as an indicator of differential pricing in dynamic domestic electricity tariffs, and exploits the modern smart-grid infrastructure to respond to these dynamic pricing structures. By comparing the UEP with real-time utility price data, the algorithm can discriminate high-price hours and low-price hours, and automatically schedule the operation of home appliances, as well as control an energy-storage system to store surplus energy during low-price hours for consumption during high-price hours. The algorithm uses an exponential smoothing model to predict the required energy of appliances, and uses Bayes' theorem to calculate the probability that appliances will demand power at a given time based on historic energy-usage data. Simulation results using pricing structures from the Ameren Illinois power company show that the proposed algorithm can significantly reduce or even eliminate peak-hour energy consumption, leading to a reduction in the overall domestic energy costs of up to 39%.

Suggested Citation

  • Li, Xiao Hui & Hong, Seung Ho, 2014. "User-expected price-based demand response algorithm for a home-to-grid system," Energy, Elsevier, vol. 64(C), pages 437-449.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:437-449
    DOI: 10.1016/j.energy.2013.11.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blumsack, Seth & Fernandez, Alisha, 2012. "Ready or not, here comes the smart grid!," Energy, Elsevier, vol. 37(1), pages 61-68.
    2. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    3. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    4. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    5. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    6. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    2. Zhang, Yunchao & Islam, Md Monirul & Sun, Zeyi & Yang, Sijia & Dagli, Cihan & Xiong, Haoyi, 2018. "Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program," International Journal of Production Economics, Elsevier, vol. 206(C), pages 261-267.
    3. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    4. Li, Lanlan & Gong, Chengzhu & Wang, Deyun & Zhu, Kejun, 2013. "Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou," Energy, Elsevier, vol. 52(C), pages 37-43.
    5. Soares, Ana & Antunes, Carlos Henggeler & Oliveira, Carlos & Gomes, Álvaro, 2014. "A multi-objective genetic approach to domestic load scheduling in an energy management system," Energy, Elsevier, vol. 77(C), pages 144-152.
    6. Fletcher, James & Malalasekera, Weeratunge, 2016. "Development of a user-friendly, low-cost home energy monitoring and recording system," Energy, Elsevier, vol. 111(C), pages 32-46.
    7. Hong, Seung Ho & Kim, Se Hwan & Kim, Gi Myung & Kim, Hyung Lae, 2014. "Experimental evaluation of BZ-GW (BACnet-ZigBee smart grid gateway) for demand response in buildings," Energy, Elsevier, vol. 65(C), pages 62-70.
    8. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    9. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2014. "Scheduling policies for two-state smart-home appliances in dynamic electricity pricing environments," Energy, Elsevier, vol. 69(C), pages 455-469.
    10. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    11. Kharrati, Saeed & Kazemi, Mostafa & Ehsan, Mehdi, 2016. "Equilibria in the competitive retail electricity market considering uncertainty and risk management," Energy, Elsevier, vol. 106(C), pages 315-328.
    12. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    13. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    14. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    15. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    16. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    17. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    18. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    19. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    20. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:437-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.