IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6333-d649755.html
   My bibliography  Save this article

Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users

Author

Listed:
  • Ning Zhang

    (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
    Department of Electrical Engineering, Yuan Ze University, 135, Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan)

  • Nien-Che Yang

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei 10607, Taiwan)

  • Jian-Hong Liu

    (Department of Electrical Engineering, Yuan Ze University, 135, Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan)

Abstract

With high proportions of renewable energy generation in power systems, the power system dispatch with renewable energy generation has currently become a popular research direction. In our study, we propose a multi-objective dispatch model for a hybrid microgrid comprising a wind generator, photovoltaic (PV) generator, and an energy storage system to optimize the time-of-use (TOU) electricity price. The objective of the proposed multi-objective dispatch model is to maximize the profit of the power company and demand users, and minimize the proportion of users abandoning PV power and wind power. The elastic price of the load demand with a linear function is employed to optimize the TOU electricity price. Finally, we applied five test cases to validate the practicability of the multi-objective dispatch model.

Suggested Citation

  • Ning Zhang & Nien-Che Yang & Jian-Hong Liu, 2021. "Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users," Energies, MDPI, vol. 14(19), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6333-:d:649755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    2. Feihu Hu & Xuan Feng & Hui Cao, 2018. "A Short-Term Decision Model for Electricity Retailers: Electricity Procurement and Time-of-Use Pricing," Energies, MDPI, vol. 11(12), pages 1-18, November.
    3. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    4. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    5. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    6. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    7. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    8. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    9. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    2. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    3. Scioletti, Michael S. & Goodman, Johanna K. & Kohl, Paul A. & Newman, Alexandra M., 2016. "A physics-based integer-linear battery modeling paradigm," Applied Energy, Elsevier, vol. 176(C), pages 245-257.
    4. Deng, Tingting & Yan, Wenzhou & Nojavan, Sayyad & Jermsittiparsert, Kittisak, 2020. "Risk evaluation and retail electricity pricing using downside risk constraints method," Energy, Elsevier, vol. 192(C).
    5. Ayop, Razman & Isa, Normazlina Mat & Tan, Chee Wei, 2018. "Components sizing of photovoltaic stand-alone system based on loss of power supply probability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2731-2743.
    6. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    7. Ilak, Perica & Rajšl, Ivan & Krajcar, Slavko & Delimar, Marko, 2015. "The impact of a wind variable generation on the hydro generation water shadow price," Applied Energy, Elsevier, vol. 154(C), pages 197-208.
    8. Guillermo Martínez-Lucas & José Ignacio Sarasúa & José Ángel Sánchez-Fernández, 2018. "Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System," Energies, MDPI, vol. 11(1), pages 1-25, January.
    9. Ning Zhang & Nien-Che Yang & Jian-Hong Liu, 2021. "Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks," Energies, MDPI, vol. 14(20), pages 1-13, October.
    10. Mahmood Hosseini Imani & Shaghayegh Zalzar & Amir Mosavi & Shahaboddin Shamshirband, 2018. "Strategic Behavior of Retailers for Risk Reduction and Profit Increment via Distributed Generators and Demand Response Programs," Energies, MDPI, vol. 11(6), pages 1-24, June.
    11. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    12. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    13. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    14. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    15. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    16. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    17. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    18. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    19. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    20. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6333-:d:649755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.