IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2009-71-3.html

Flocking Behaviour: Agent-Based Simulation and Hierarchical Leadership

Author

Abstract

We have studied how leaders emerge in a group as a consequence of interactions among its members. We propose that leaders can emerge as a consequence of a self-organized process based on local rules of dyadic interactions among individuals. Flocks are an example of self-organized behaviour in a group and properties similar to those observed in flocks might also explain some of the dynamics and organization of human groups. We developed an agent-based model that generated flocks in a virtual world and implemented it in a multi-agent simulation computer program that computed indices at each time step of the simulation to quantify the degree to which a group moved in a coordinated way (index of flocking behaviour) and the degree to which specific individuals led the group (index of hierarchical leadership). We ran several series of simulations in order to test our model and determine how these indices behaved under specific agent and world conditions. We identified the agent, world property, and model parameters that made stable, compact flocks emerge, and explored possible environmental properties that predicted the probability of becoming a leader.

Suggested Citation

  • Vicenç Quera & Francesc S. Beltran & Ruth Dolado, 2010. "Flocking Behaviour: Agent-Based Simulation and Hierarchical Leadership," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(2), pages 1-8.
  • Handle: RePEc:jas:jasssj:2009-71-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/13/2/8/8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurt C. Foster & Stephen Q. Muth & John J. Potterat & Richard B. Rothenberg, 2001. "A Faster Katz Status Score Algorithm," Computational and Mathematical Organization Theory, Springer, vol. 7(4), pages 275-285, December.
    2. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Secchi & Raffaello Seri, 2017. "Controlling for false negatives in agent-based models: a review of power analysis in organizational research," Computational and Mathematical Organization Theory, Springer, vol. 23(1), pages 94-121, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    2. Zhou, Wen & Jia, Yifan, 2017. "Predicting links based on knowledge dissemination in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 561-568.
    3. Wakefield, Robin, 2008. "Networks of accounting research: A citation-based structural and network analysis," The British Accounting Review, Elsevier, vol. 40(3), pages 228-244.
    4. Vasco M. Carvalho, 2014. "From Micro to Macro via Production Networks," Journal of Economic Perspectives, American Economic Association, vol. 28(4), pages 23-48, Fall.
    5. Elisa Cavezzali & Jacopo Crepaldi & Ugo Rigoni, 2014. "Proximity to hubs of expertise and financial analyst forecast accuracy," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 4(2), pages 157-179, December.
    6. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    7. Yao-Yu Chih, 2018. "Status competition and benevolence in social networks," Oxford Economic Papers, Oxford University Press, vol. 70(1), pages 141-162.
    8. Agustín Saade Ospina, 2010. "Estructura de red del Mercado Electrónico Colombiano (MEC) e identificación de agentes sistémicos según criterios de centralidad," Temas de Estabilidad Financiera 054, Banco de la Republica de Colombia.
    9. Xing Li & Qingsong Li & Wei Wei & Zhiming Zheng, 2022. "Convolution Based Graph Representation Learning from the Perspective of High Order Node Similarities," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    10. Zenou, Yves & Lindquist, Matthew, 2014. "Key Players in Co-Offending Networks," CEPR Discussion Papers 9889, C.E.P.R. Discussion Papers.
    11. Zhang, Pei-wen & Zhao, Lian-zheng & Wang, Yu & Ding, Rui & Du, Fu-min, 2024. "Air route link prediction based on the PSO-CLP model," Journal of Air Transport Management, Elsevier, vol. 120(C).
    12. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2016. "New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 14-29.
    13. Guo, Wei-Feng & Zhang, Shao-Wu, 2016. "A general method of community detection by identifying community centers with affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 508-519.
    14. Helsley, Robert W. & Zenou, Yves, 2014. "Social networks and interactions in cities," Journal of Economic Theory, Elsevier, vol. 150(C), pages 426-466.
    15. Xiong, Yifan & Li, Ziyan, 2022. "Staffing problems with local network externalities," Economics Letters, Elsevier, vol. 212(C).
    16. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    17. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    18. D’Errico, Marco & Battiston, Stefano & Peltonen, Tuomas & Scheicher, Martin, 2018. "How does risk flow in the credit default swap market?," Journal of Financial Stability, Elsevier, vol. 35(C), pages 53-74.
    19. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves & Lee, Lung-Fei, 2011. "Criminal Networks: Who is the Key Player?," Research Papers in Economics 2011:7, Stockholm University, Department of Economics.
    20. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633859, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2009-71-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.