IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

An Agent-Based Representation of the Garbage Can Model of Organizational Choice

Listed author(s):

Cohen, March and Olsen's Garbage Can Model (GCM) of organizational choice represent perhaps the first – and remains by far the most influential –agent-based representation of organizational decision processes. According to the GCM organizations are conceptualized as crossroads of time-dependent flows of four distinct classes of objects: 'participants,' 'opportunities,' 'solutions' and 'problems.' Collisions among the different objects generate events called 'decisions.' In this paper we use NetLogo to build an explicit agent-based representation of the original GCM. We conduct a series of simulation experiments to validate and extend some of the most interesting conclusions of the GCM. We show that our representation is able to reproduce a number of properties of the original model. Yet, unlike the original model, in our representation these properties are not encoded explicitly, but emerge from general principles of the Garbage Can decision processes.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://jasss.soc.surrey.ac.uk/11/1/1/1.pdf
Download Restriction: no

Article provided by Journal of Artificial Societies and Social Simulation in its journal Journal of Artificial Societies and Social Simulation.

Volume (Year): 11 (2007)
Issue (Month): 1 ()
Pages: 1-1

as
in new window

Handle: RePEc:jas:jasssj:2007-19-3
Contact details of provider:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Robert Gibbons, 2003. "Team theory, garbage cans and real organizations: some history and prospects of economic research on decision-making in organizations," Industrial and Corporate Change, Oxford University Press, vol. 12(4), pages 753-787, August.
  2. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
  3. James G. March, 1978. "Bounded Rationality, Ambiguity, and the Engineering of Choice," Bell Journal of Economics, The RAND Corporation, vol. 9(2), pages 587-608, Autumn.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2007-19-3. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Flaminio Squazzoni)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.