IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v65y2019i11p4980-5000.html
   My bibliography  Save this article

Dynamic Learning and Pricing with Model Misspecification

Author

Listed:
  • Mila Nambiar

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • David Simchi-Levi

    (Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering, and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • He Wang

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We study a multiperiod dynamic pricing problem with contextual information, where the seller uses a misspecified demand model. The seller sequentially observes past demand, updates model parameters, and then chooses the price for the next period based on time-varying features. We show that model misspecification leads to a correlation between price and prediction error of demand per period, which, in turn, leads to inconsistent price elasticity estimates and hence suboptimal pricing decisions. We propose a “random price shock” (RPS) algorithm that dynamically generates randomized price shocks to estimate price elasticity, while maximizing revenue. We show that the RPS algorithm has strong theoretical performance guarantees, that it is robust to model misspecification, and that it can be adapted to a number of business settings, including (1) when the feasible price set is a price ladder and (2) when the contextual information is not IID. We also perform offline simulations to gauge the performance of RPS on a large fashion retail data set and find that is expected to earn 8%–20% more revenue on average than competing algorithms that do not account for price endogeneity.

Suggested Citation

  • Mila Nambiar & David Simchi-Levi & He Wang, 2019. "Dynamic Learning and Pricing with Model Misspecification," Management Science, INFORMS, vol. 65(11), pages 4980-5000, November.
  • Handle: RePEc:inm:ormnsc:v:65:y:2019:i:11:p:4980-5000
    DOI: 10.1287/mnsc.2018.3194
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2018.3194
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2018.3194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    2. Garrett van Ryzin & Jeff McGill, 2000. "Revenue Management Without Forecasting or Optimization: An Adaptive Algorithm for Determining Airline Seat Protection Levels," Management Science, INFORMS, vol. 46(6), pages 760-775, June.
    3. Gérard P. Cachon & A. Gürhan Kök, 2007. "Implementation of the Newsvendor Model with Clearance Pricing: How to (and How Not to) Estimate a Salvage Value," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 276-290, October.
    4. Robert Phillips & A. Serdar Şimşek & Garrett van Ryzin, 2015. "The Effectiveness of Field Price Discretion: Empirical Evidence from Auto Lending," Management Science, INFORMS, vol. 61(8), pages 1741-1759, August.
    5. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    6. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    7. Zizhuo Wang & Shiming Deng & Yinyu Ye, 2014. "Close the Gaps: A Learning-While-Doing Algorithm for Single-Product Revenue Management Problems," Operations Research, INFORMS, vol. 62(2), pages 318-331, April.
    8. James D. Dana, Jr. & Nicholas C. Petruzzi, 2001. "Note: The Newsvendor Model with Endogenous Demand," Management Science, INFORMS, vol. 47(11), pages 1488-1497, November.
    9. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2006. "Models of the Spiral-Down Effect in Revenue Management," Operations Research, INFORMS, vol. 54(5), pages 968-987, October.
    10. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    11. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    12. Jun Li & Nelson Granados & Serguei Netessine, 2014. "Are Consumers Strategic? Structural Estimation from the Air-Travel Industry," Management Science, INFORMS, vol. 60(9), pages 2114-2137, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gah-Yi Ban & N. Bora Keskin, 2021. "Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity," Management Science, INFORMS, vol. 67(9), pages 5549-5568, September.
    2. Jianyu Xu & Yu-Xiang Wang, 2023. "Pricing with Contextual Elasticity and Heteroscedastic Valuation," Papers 2312.15999, arXiv.org.
    3. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    4. Jinzhi Bu & David Simchi-Levi & Yunzong Xu, 2022. "Online Pricing with Offline Data: Phase Transition and Inverse Square Law," Management Science, INFORMS, vol. 68(12), pages 8568-8588, December.
    5. Zikun Ye & Dennis J. Zhang & Heng Zhang & Renyu Zhang & Xin Chen & Zhiwei Xu, 2023. "Cold Start to Improve Market Thickness on Online Advertising Platforms: Data-Driven Algorithms and Field Experiments," Management Science, INFORMS, vol. 69(7), pages 3838-3860, July.
    6. Pathikrit Basu, 2023. "Mechanism design with model specification," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 263-276, August.
    7. Sentao Miao & Xi Chen & Xiuli Chao & Jiaxi Liu & Yidong Zhang, 2022. "Context‐based dynamic pricing with online clustering," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3559-3575, September.
    8. Wayne Taylor & Brett Hollenbeck, 2021. "Leveraging loyalty programs using competitor based targeting," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 417-455, December.
    9. Jianqing Fan & Yongyi Guo & Mengxin Yu, 2021. "Policy Optimization Using Semi-parametric Models for Dynamic Pricing," Papers 2109.06368, arXiv.org, revised May 2022.
    10. Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2022. "Demand Estimation Using Managerial Responses to Automated Price Recommendations," Management Science, INFORMS, vol. 68(11), pages 7918-7939, November.
    11. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    12. Jin Li & Ye Luo & Xiaowei Zhang, 2021. "Causal Reinforcement Learning: An Instrumental Variable Approach," Papers 2103.04021, arXiv.org, revised Sep 2022.
    13. Woonghee Tim Huh & Michael Jong Kim & Meichun Lin, 2022. "Bayesian dithering for learning: Asymptotically optimal policies in dynamic pricing," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3576-3593, September.
    14. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
    15. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    2. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    3. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    4. den Boer, Arnoud V. & Sierag, Dirk D., 2021. "Decision-based model selection," European Journal of Operational Research, Elsevier, vol. 290(2), pages 671-686.
    5. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    6. Jianyu Xu & Yu-Xiang Wang, 2022. "Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise," Papers 2201.11341, arXiv.org, revised Apr 2022.
    7. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    8. Boxiao Chen & Xiuli Chao & Hyun-Soo Ahn, 2019. "Coordinating Pricing and Inventory Replenishment with Nonparametric Demand Learning," Operations Research, INFORMS, vol. 67(4), pages 1035-1052, July.
    9. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    10. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    11. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.
    12. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    13. Yining Wang & Boxiao Chen & David Simchi-Levi, 2021. "Multimodal Dynamic Pricing," Management Science, INFORMS, vol. 67(10), pages 6136-6152, October.
    14. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    15. Peter Seele & Claus Dierksmeier & Reto Hofstetter & Mario D. Schultz, 2021. "Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing," Journal of Business Ethics, Springer, vol. 170(4), pages 697-719, May.
    16. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    17. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2019. "Nonparametric Self-Adjusting Control for Joint Learning and Optimization of Multiproduct Pricing with Finite Resource Capacity," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 601-631, May.
    18. Amine Allouah & Omar Besbes, 2020. "Prior-Independent Optimal Auctions," Management Science, INFORMS, vol. 66(10), pages 4417-4432, October.
    19. Ningyuan Chen & Guillermo Gallego, 2021. "Nonparametric Pricing Analytics with Customer Covariates," Operations Research, INFORMS, vol. 69(3), pages 974-984, May.
    20. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:65:y:2019:i:11:p:4980-5000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.