IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v49y2003i4p432-445.html
   My bibliography  Save this article

A Relational View of Information Seeking and Learning in Social Networks

Author

Listed:
  • Stephen P. Borgatti

    () (Carroll School of Management, Boston College, Chestnut Hill, Massachusetts 02467)

  • Rob Cross

    () (McIntire School of Commerce, University of Virginia, Charlottesville, Virginia 22904)

Abstract

Research in organizational learning has demonstrated processes and occasionally performance implications of acquisition of declarative (know-what) and procedural (know-how) knowledge. However, considerably less attention has been paid to learned characteristics of relationships that affect the decision to seek information from other people. Based on a review of the social network, information processing, and organizational learning literatures, along with the results of a previous qualitative study, we propose a formal model of information seeking in which the probability of seeking information from another person is a function of (1) knowing what that person knows; (2) valuing what that person knows; (3) being able to gain timely access to that person's thinking; and (4) perceiving that seeking information from that person would not be too costly. We also hypothesize that the knowing, access, and cost variables mediate the relationship between physical proximity and information seeking. The model is tested using two separate research sites to provide replication. The results indicate strong support for the model and the mediation hypothesis (with the exception of the cost variable). Implications are drawn for the study of both transactive memory and organizational learning, as well as for management practice.

Suggested Citation

  • Stephen P. Borgatti & Rob Cross, 2003. "A Relational View of Information Seeking and Learning in Social Networks," Management Science, INFORMS, vol. 49(4), pages 432-445, April.
  • Handle: RePEc:inm:ormnsc:v:49:y:2003:i:4:p:432-445
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.49.4.432.14428
    Download Restriction: no

    References listed on IDEAS

    as
    1. Diane L. Rulke & Joseph Galaskiewicz, 2000. "Distribution of Knowledge, Group Network Structure, and Group Performance," Management Science, INFORMS, vol. 46(5), pages 612-625, May.
    2. Linda Argote & Sara L. Beckman & Dennis Epple, 1990. "The Persistence and Transfer of Learning in Industrial Settings," Management Science, INFORMS, vol. 36(2), pages 140-154, February.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:49:y:2003:i:4:p:432-445. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.