IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v48y2002i12p1555-1568.html
   My bibliography  Save this article

Using a Bayesian Approach to Quantify Scale Compatibility Bias

Author

Listed:
  • Richard M. Anderson

    () (Department of Geography and Environmental Engineering, 313 Ames Hall, The Johns Hopkins University, Baltimore, Maryland 21218)

  • Benjamin F. Hobbs

    () (Department of Geography and Environmental Engineering, 313 Ames Hall, The Johns Hopkins University, Baltimore, Maryland 21218)

Abstract

This paper proposes a new analytical framework to quantify and correct for scale compatibility bias in the assessment of trade-off weights in multiattribute value analysis. The procedure is demonstrated with an application to a fisheries management problem. Trade-off judgments are elicited from a group of fisheries experts with management responsibility in the Lake Erie basin. Then we use a Bayesian method to compute posterior probability distributions of attribute weights. In computing the Bayesian weights, our measurement model assumes that the weight ratios produced by each respondent's judgments are subject to random error and an unknown scale compatibility bias. Ratios are log-transformed and analyzed by a Bayesian linear model with a noninformative prior distribution. Posterior distributions are then developed for the weights and the bias. We estimate the compatibility bias for each person and, in most cases, it is found to be large and in the predicted direction, suggesting the importance of its consideration in deriving trade-off weights. In addition, the Bayesian framework is shown to be useful for quantifying the value of additional information about multiattribute weights. Finally, a simple heuristic procedure for assessing the weights appears to be effective in eliminating the bias.

Suggested Citation

  • Richard M. Anderson & Benjamin F. Hobbs, 2002. "Using a Bayesian Approach to Quantify Scale Compatibility Bias," Management Science, INFORMS, vol. 48(12), pages 1555-1568, December.
  • Handle: RePEc:inm:ormnsc:v:48:y:2002:i:12:p:1555-1568
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.48.12.1555.444
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hobbs, Benjamin F & Horn, Graham TF, 1997. "Building public confidence in energy planning: a multimethod MCDM approach to demand-side planning at BC gas," Energy Policy, Elsevier, vol. 25(3), pages 357-375, February.
    2. Gregory W. Fischer & Mary Frances Luce & Jianmin Jia, 2000. "Attribute Conflict and Preference Uncertainty: Effects on Judgment Time and Error," Management Science, INFORMS, vol. 46(1), pages 88-103, January.
    3. Han Bleichrodt & Jose Luis Pinto & Peter P. Wakker, 2001. "Making Descriptive Use of Prospect Theory to Improve the Prescriptive Use of Expected Utility," Management Science, INFORMS, vol. 47(11), pages 1498-1514, November.
    4. Payne, John W & Bettman, James R & Schkade, David A, 1999. "Measuring Constructed Preferences: Towards a Building Code," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 243-270, December.
    5. Gregory W. Fischer & Ziv Carmon & Dan Ariely & Gal Zauberman, 1999. "Goal-Based Construction of Preferences: Task Goals and the Prominence Effect," Management Science, INFORMS, vol. 45(8), pages 1057-1075, August.
    6. F. Hutton Barron & Bruce E. Barrett, 1996. "Decision Quality Using Ranked Attribute Weights," Management Science, INFORMS, vol. 42(11), pages 1515-1523, November.
    7. Gregory W. Fischer & Jianmin Jia & Mary Frances Luce, 2000. "Attribute Conflict and Preference Uncertainty: The RandMAU Model," Management Science, INFORMS, vol. 46(5), pages 669-684, May.
    8. Philippe Delquié, 1997. ""Bi-Matching": A New Preference Assessment Method to Reduce Compatibility Effects," Management Science, INFORMS, vol. 43(5), pages 640-658, May.
    9. Katrin Borcherding & Thomas Eppel & Detlof von Winterfeldt, 1991. "Comparison of Weighting Judgments in Multiattribute Utility Measurement," Management Science, INFORMS, vol. 37(12), pages 1603-1619, December.
    10. Peter C. Fishburn, 1967. "Methods of Estimating Additive Utilities," Management Science, INFORMS, vol. 13(7), pages 435-453, March.
    11. Paul J. H. Schoemaker & C. Carter Waid, 1982. "An Experimental Comparison of Different Approaches to Determining Weights in Additive Utility Models," Management Science, INFORMS, vol. 28(2), pages 182-196, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahtinen, Tuomas J. & Hämäläinen, Raimo P., 2016. "Path dependence and biases in the even swaps decision analysis method," European Journal of Operational Research, Elsevier, vol. 249(3), pages 890-898.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:48:y:2002:i:12:p:1555-1568. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.