IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v46y2000i2p318-326.html
   My bibliography  Save this article

Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem

Author

Listed:
  • Hartmut Stadtler

    (Technische Universität Darmstadt, Institut für Betriebswirtschaftslehre, Fachgebiet Fertigungs- und Materialwirtschaft, Hochschulstra\beta e 1, D 64289 Darmstadt, Germany)

Abstract

A major argument for favoring simple lot-sizing heuristics---like the Silver/Meal or Groff's heuristic---to solve instances of the dynamic single-level uncapacitated lot-sizing problem (SLLSP) instead of exact algorithms---like those of Wagner/Whitin or Federgruen/Tzur---is that exact algorithms applied in a rolling horizon environment are heuristics too and may be outperformed by simple heuristics. This article shows how to modify the model of the SLLSP by looking beyond the planning horizon. Extensive tests within a rolling horizon environment have demonstrated that the modified model solved by an exact algorithm now performs at least as well as well-known heuristics and is fairly insensitive to the length of the planning horizon. Furthermore, our principal idea of improving rolling schedules by considering only a portion of the fixed cost related to a decision with an impact on periods beyond the planning horizon is applicable to a wide range of decision models.

Suggested Citation

  • Hartmut Stadtler, 2000. "Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem," Management Science, INFORMS, vol. 46(2), pages 318-326, February.
  • Handle: RePEc:inm:ormnsc:v:46:y:2000:i:2:p:318-326
    DOI: 10.1287/mnsc.46.2.318.11924
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.46.2.318.11924
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.46.2.318.11924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    2. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    3. Stadtler, Hartmut, 1997. "Reformulations of the shortest route model for dynamic multi-item multi-level capacitated lotsizing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7096, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Richard C. Grinold, 1983. "Model Building Techniques for the Correction of End Effects in Multistage Convex Programs," Operations Research, INFORMS, vol. 31(3), pages 407-431, June.
    5. Suresh Chand & Suresh P. Sethi & Gerhard Sorger, 1992. "Forecast Horizons in the Discounted Dynamic Lot Size Model," Management Science, INFORMS, vol. 38(7), pages 1034-1048, July.
    6. John O. McClain & Joseph Thomas, 1977. "Horizon Effects in Aggregate Production Planning with Seasonal Demand," Management Science, INFORMS, vol. 23(7), pages 728-736, March.
    7. Tempelmeier, Horst & Helber, Stefan, 1994. "A heuristic for dynamic multi-item multi-level capacitated lotsizing for general product structures," European Journal of Operational Research, Elsevier, vol. 75(2), pages 296-311, June.
    8. Awi Federgruen & Michal Tzur, 1994. "Minimal Forecast Horizons and a New Planning Procedure for the General Dynamic Lot Sizing Model: Nervousness Revisited," Operations Research, INFORMS, vol. 42(3), pages 456-468, June.
    9. Gary D. Eppen & R. Kipp Martin, 1987. "Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 832-848, December.
    10. Russell, R. A. & Urban, T. L., 1993. "Horizon extension for rolling production schedules: Length and accuracy requirements," International Journal of Production Economics, Elsevier, vol. 29(1), pages 111-122, February.
    11. Kenneth R. Baker & David W. Peterson, 1979. "An Analytic Framework for Evaluating Rolling Schedules," Management Science, INFORMS, vol. 25(4), pages 341-351, April.
    12. Alain Bensoussan & Jean‐Marie Proth & Maurice Queyranne, 1991. "A planning horizon algorithm for deterministic inventory management with piecewise linear concave costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 729-742, October.
    13. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    2. Marshall Fisher & Kamalini Ramdas & Yu-Sheng Zheng, 2001. "Ending Inventory Valuation in Multiperiod Production Scheduling," Management Science, INFORMS, vol. 47(5), pages 679-692, May.
    3. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    4. Drexl, Andreas & Haase, Knut, 1992. "A new type of model for multi-item capacitated dynamic lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 286, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Wilco van den Heuvel & Albert P.M. Wagelmans, 2002. "A Note on Ending Inventory Valuation in Multiperiod Production Scheduling," Tinbergen Institute Discussion Papers 02-067/4, Tinbergen Institute.
    6. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    7. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    8. Drexl, Andreas & Jordan, Carsten & Kimms, Alf, 1997. "Gruppierungs- und Reihenfolgeprobleme in der Fertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 447, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Yongpei Guan & Andrew J. Miller, 2008. "Polynomial-Time Algorithms for Stochastic Uncapacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 56(5), pages 1172-1183, October.
    10. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    11. Minjiao Zhang & Simge Küçükyavuz & Hande Yaman, 2012. "A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands," Operations Research, INFORMS, vol. 60(4), pages 918-935, August.
    12. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    13. Hartmut Stadtler, 2003. "Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows," Operations Research, INFORMS, vol. 51(3), pages 487-502, June.
    14. Siao-Leu Phouratsamay & Safia Kedad-Sidhoum & Fanny Pascual, 2021. "Coordination of a two-level supply chain with contracts," 4OR, Springer, vol. 19(2), pages 235-264, June.
    15. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    16. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    17. Hark‐Chin Hwang & Wilco van den Heuvel, 2012. "Improved algorithms for a lot‐sizing problem with inventory bounds and backlogging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 244-253, April.
    18. Martel, Alain & Gascon, Andre, 1998. "Dynamic lot-sizing with price changes and price-dependent holding costs," European Journal of Operational Research, Elsevier, vol. 111(1), pages 114-128, November.
    19. Elena Katok & Holly S. Lewis & Terry P. Harrison, 1998. "Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources," Management Science, INFORMS, vol. 44(6), pages 859-877, June.
    20. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:46:y:2000:i:2:p:318-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.