IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v38y2019i5p888-909.html
   My bibliography  Save this article

Linear Estimation of Aggregate Dynamic Discrete Demand for Durable Goods: Overcoming the Curse of Dimensionality

Author

Listed:
  • Cheng Chou

    (University of Leicester, Leicester LE1 7RH, United Kingdom)

  • Tim Derdenger

    (Carnegie Mellon University, Pittsburgh, Pennsylvania 15289)

  • Vineet Kumar

    (Yale University, New Haven, Connecticut 06511)

Abstract

We develop a new approach using market-level data to model, identify, and estimate a dynamic discrete choice demand model for durable goods with continuous unobserved product-specific state variables. They are specified as serially correlated and correlated with the observed product characteristics, particularly price. We provide a method to estimate all model primitives, including the consumer’s discount factor and the state transition distributions of unobserved product characteristics without the need to reduce the dimension of the state space or by other approximation techniques, such as discretizing state variables. We prove the identification of model primitives and provide an estimation algorithm in which the most computationally demanding step is a linear regression. Finally, we show how it can be implemented in an application in which we estimate the demand for smartphones.

Suggested Citation

  • Cheng Chou & Tim Derdenger & Vineet Kumar, 2019. "Linear Estimation of Aggregate Dynamic Discrete Demand for Durable Goods: Overcoming the Curse of Dimensionality," Marketing Science, INFORMS, vol. 38(5), pages 888-909, September.
  • Handle: RePEc:inm:ormksc:v:38:y:2019:i:5:p:888-909
    DOI: 10.1287/mksc.2019.1182
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mksc.2019.1182
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2019.1182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    2. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    3. A. Norets & X. Tang, 2014. "Semiparametric Inference in Dynamic Binary Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1229-1262.
    4. Ronald L. Goettler & Brett R. Gordon, 2011. "Does AMD Spur Intel to Innovate More?," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1141-1200.
    5. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    6. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    7. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 565-596, May.
    8. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82(5), pages 1749-1797, September.
    9. Thierry Magnac & David Thesmar, 2002. "Identifying Dynamic Discrete Decision Processes," Econometrica, Econometric Society, vol. 70(2), pages 801-816, March.
    10. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    11. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    12. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    13. Patrick Bajari & Chenghuan Sean Chu & Denis Nekipelov & Minjung Park, 2016. "Identification and semiparametric estimation of a finite horizon dynamic discrete choice model with a terminating action," Quantitative Marketing and Economics (QME), Springer, vol. 14(4), pages 271-323, December.
    14. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    15. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    16. Paulo Albuquerque & Bart J. Bronnenberg, 2009. "Estimating Demand Heterogeneity Using Aggregated Data: An Application to the Frozen Pizza Category," Marketing Science, INFORMS, vol. 28(2), pages 356-372, 03-04.
    17. Timothy Derdenger & Vineet Kumar, 2019. "Estimating dynamic discrete choice models with aggregate data: Properties of the inclusive value approximation," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 359-384, December.
    18. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    19. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    20. Oleg Melnikov, 2013. "Demand For Differentiated Durable Products: The Case Of The U.S. Computer Printer Market," Economic Inquiry, Western Economic Association International, vol. 51(2), pages 1277-1298, April.
    21. Inseong Song & Pradeep Chintagunta, 2003. "A Micromodel of New Product Adoption with Heterogeneous and Forward-Looking Consumers: Application to the Digital Camera Category," Quantitative Marketing and Economics (QME), Springer, vol. 1(4), pages 371-407, December.
    22. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    23. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    24. Kalouptsidi, Myrto & Souza-Rodrigues, Eduardo & Scott, Paul, 2017. "Identification of Counterfactuals in Dynamic Discrete Choice Models," CEPR Discussion Papers 12470, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Derdenger & Vineet Kumar, 2019. "Estimating dynamic discrete choice models with aggregate data: Properties of the inclusive value approximation," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 359-384, December.
    2. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2021. "Linear IV regression estimators for structural dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 222(1), pages 778-804.
    3. Doug J. Chung & Byungyeon Kim & Byoung G. Park, 2021. "The Comprehensive Effects of Sales Force Management: A Dynamic Structural Analysis of Selection, Compensation, and Training," Management Science, INFORMS, vol. 67(11), pages 7046-7074, November.
    4. Cheng Chou & Geert Ridder & Ruoyao Shi, 2024. "Identification and Estimation of Nonstationary Dynamic Binary Choice Models," Working Papers 202402, University of California at Riverside, Department of Economics.
    5. Yue Liu & Rong Luo, 2023. "Network Effects and Multinetwork Sellers’ Dynamic Pricing in the U.S. Smartphone Market," Management Science, INFORMS, vol. 69(6), pages 3297-3318, June.
    6. Takeshi Fukasawa, 2022. "The Biases in Applying Static Demand Models under Dynamic Demand," Discussion Paper Series DP2022-18, Research Institute for Economics & Business Administration, Kobe University, revised Jul 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2018. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," NBER Working Papers 25134, National Bureau of Economic Research, Inc.
    2. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2021. "Linear IV regression estimators for structural dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 222(1), pages 778-804.
    3. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2018. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," CEPR Discussion Papers 13240, C.E.P.R. Discussion Papers.
    4. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    5. Victor Aguirregabiria & Victor Aguirregabiria & Aviv Nevo & Aviv Nevo, 2010. "Recent Developments in Empirical IO: Dynamic Demand and Dynamic Games," Working Papers tecipa-419, University of Toronto, Department of Economics.
    6. repec:spo:wpmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    7. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    8. repec:hal:spmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    9. Odran Bonnet & Alfred Galichon & Yu-Wei Hsieh & Keith O’Hara & Matt Shum, 2022. "Yogurts Choose Consumers? Estimation of Random-Utility Models via Two-Sided Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3085-3114.
    10. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    11. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1445-1488, December.
    12. Masakazu Ishihara & Andrew T. Ching, 2019. "Dynamic Demand for New and Used Durable Goods Without Physical Depreciation: The Case of Japanese Video Games," Marketing Science, INFORMS, vol. 38(3), pages 392-416, May.
    13. Khai Xiang Chiong & Alfred Galichon & Matt Shum, 2021. "Duality in dynamic discrete-choice models," Papers 2102.06076, arXiv.org, revised Feb 2021.
    14. Takeshi Fukasawa, 2022. "The Biases in Applying Static Demand Models under Dynamic Demand," Discussion Paper Series DP2022-18, Research Institute for Economics & Business Administration, Kobe University, revised Jul 2022.
    15. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    16. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    17. Kalouptsidi, Myrto & Scott, Paul & Souza-Rodrigues, Edouardo, 2015. "Identification of Counterfactuals and Payoffs in Dynamic Discrete Choice with an Application to Land Use," TSE Working Papers 15-596, Toulouse School of Economics (TSE).
    18. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza‐Rodrigues, 2021. "Identification of counterfactuals in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 12(2), pages 351-403, May.
    19. Victor Aguirregabiria & Allan Collard-Wexler & Stephen P. Ryan, 2021. "Dynamic Games in Empirical Industrial Organization," NBER Working Papers 29291, National Bureau of Economic Research, Inc.
    20. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    21. A. Ronald Gallant & Han Hong & Ahmed Khwaja, 2018. "The Dynamic Spillovers of Entry: An Application to the Generic Drug Industry," Management Science, INFORMS, vol. 64(3), pages 1189-1211, March.
    22. Jason R. Blevins & Wei Shi & Donald R. Haurin & Stephanie Moulton, 2020. "A Dynamic Discrete Choice Model Of Reverse Mortgage Borrower Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 61(4), pages 1437-1477, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:38:y:2019:i:5:p:888-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.