IDEAS home Printed from
   My bibliography  Save this article

Asymmetric and Neighborhood Cross-Price Effects: Some Empirical Generalizations


  • Raj Sethuraman

    (Cox School of Business, Southern Methodist University, Dallas, Texas 75275)

  • V. Srinivasan

    (Graduate School of Business, Stanford University, Stanford, California 94305)

  • Doyle Kim

    (College of Business Administration, Ulsan University, Korea)


This paper provides some empirical generalizations regarding how the relative prices of competing brands affect the cross-price effects among them. Particular focus is on the asymmetric price effect and the neighborhood price effect. The asymmetric price effect states that a price promotion by a higher-priced brand affects the market share of a lower-priced brand more so than the reverse. The neighborhood price effect states that brands that are closer to each other in price have larger cross-price effects than brands that are priced farther apart. The main objective of this paper is to test if these two effects are generalizable across product categories, and to assess which of these two effects is stronger. While the neighborhood price effect has not been rigorously tested in past research, the asymmetric price effect has been validated by several researchers. However, these tests of asymmetric price effect have predominantly used elasticity as the measure of cross-price effect. The cross-price elasticity measures the percentage change in market share (or sales) of a brand for 1% change in price of a competing brand. We show that asymmetries in cross-price elasticities tend to favor the higher-priced brand simply because of scaling effects due to considering percentage changes. Furthermore, several researchers have used logit models to infer asymmetric patterns. We also show that inferring asymmetries from conventional logit models is incorrect. To account for potential scaling effects, we consider the absolute cross-price effect defined as the change in market share (percentage) points of a target brand when a competing brand's price changes by one percent of the product category price. The advantage of this measure is that it is dimensionless (hence comparable across categories) and it avoids scaling effects. We show that in the logit model with arbitrary heterogeneity in brand preferences and price sensitivities, the absolute cross-price effect is symmetric. We develop an econometric model for simultaneously estimating the asymmetric and neighborhood price effects and assess their relative strengths. We also estimate two alternate models that address the following questions: (i) If I were managing the th highest priced brand, which brand do I impact the most by discounting and which brand hurts me the most through price discounts? (ii) Who hurts whom in National Brand vs. Store Brand competition? Based on a meta-analysis of 1,060 cross-price effects on 280 brands from 19 different grocery product categories, we provide the following empirical generalizations: 1. The asymmetric price effect holds with cross-price elasticities, but tends to disappear with absolute cross-price effects. 2. The neighborhood price effect holds with both cross-price elasticities and absolute cross-price effects, and is significantly stronger than the asymmetric price effect on both measures of cross-price effects. 3. A brand is affected the most by discounts of its immediately higher-priced brand, followed closely by discounts of its immediately lower-priced brand. 4. National brands impact store brands more so than the reverse when the cross-effect is measured in elasticities, but the asymmetric effect does not hold with absolute effects. Store brands hurt and are, in turn, hurt the most by the lower-priced national brands that are adjacent in price to the store brands. 5. Cross-price effects are greater when there are fewer competing brands in the product category, and among brands in nonfood household products than among brands in food products. The implications of these findings are discussed.

Suggested Citation

  • Raj Sethuraman & V. Srinivasan & Doyle Kim, 1999. "Asymmetric and Neighborhood Cross-Price Effects: Some Empirical Generalizations," Marketing Science, INFORMS, vol. 18(1), pages 23-41.
  • Handle: RePEc:inm:ormksc:v:18:y:1999:i:1:p:23-41

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Kim, Byung-Do & Blattberg, Robert C & Rossi, Peter E, 1995. "Modeling the Distribution of Price Sensitivity and Implications for Optimal Retail Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 291-303, July.
    2. Greg M. Allenby & Peter E. Rossi, 1991. "Quality Perceptions and Asymmetric Switching Between Brands," Marketing Science, INFORMS, vol. 10(3), pages 185-204.
    3. Lee G. Cooper, 1988. "Competitive Maps: The Structure Underlying Asymmetric Cross Elasticities," Management Science, INFORMS, vol. 34(6), pages 707-723, June.
    4. Ruth N. Bolton, 1989. "The Relationship Between Market Characteristics and Promotional Price Elasticities," Marketing Science, INFORMS, vol. 8(2), pages 153-169.
    5. Bruce G. S. Hardie & Eric J. Johnson & Peter S. Fader, 1993. "Modeling Loss Aversion and Reference Dependence Effects on Brand Choice," Marketing Science, INFORMS, vol. 12(4), pages 378-394.
    6. Bart J. Bronnenberg & Luc Wathieu, 1996. "Asymmetric Promotion Effects and Brand Positioning," Marketing Science, INFORMS, pages 379-394.
    7. Greg M. Allenby, 1989. "A Unified Approach to Identifying, Estimating and Testing Demand Structures with Aggregate Scanner Data," Marketing Science, INFORMS, vol. 8(3), pages 265-280.
    8. Ram C. Rao, 1991. "Pricing and Promotions in Asymmetric Duopolies," Marketing Science, INFORMS, vol. 10(2), pages 131-144.
    9. Lambin, Jean-Jacques & Naert, Philippe A. & Bultez, Alain, 1975. "Optimal marketing behavior in oligopoly," European Economic Review, Elsevier, vol. 6(2), pages 105-128, April.
    10. Robert C. Blattberg & Kenneth J. Wisniewski, 1989. "Price-Induced Patterns of Competition," Marketing Science, INFORMS, vol. 8(4), pages 291-309.
    11. Frank M. Bass, 1995. "Empirical Generalizations and Marketing Science: A Personal View," Marketing Science, INFORMS, vol. 14(3_supplem), pages 6-19.
    12. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:18:y:1999:i:1:p:23-41. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.