IDEAS home Printed from https://ideas.repec.org/a/inm/orited/v20y2020i2p102-112.html
   My bibliography  Save this article

The Beer Transportation Game: How to Decarbonize Logistics by Moving Freight to Sustainable Transport Modes

Author

Listed:
  • Chuanwen Dong

    (ESCP Europe, 14059 Berlin, Germany)

  • Robert Boute

    (Vlerick Business School, 3000 Leuven, Belgium
    Research Centre for Operations Management, KU Leuven, 3000 Leuven, Belgium)

Abstract

Moving freight to sustainable transport modes is one of the most frequently mentioned suggestions to decarbonize logistics. Regrettably, even with regulation and technology developing over the past years, most of the freight volumes are still shipped via road, the least sustainable means of transport. This paper presents a beer transportation game to support logistics decarbonization via a modal shift from road to rail. In the game, student teams play the role of a logistics manager of a beer brewer and decide on the transport mode and shipment volume from the brewery to a distribution center. Their decisions are evaluated by the impact on total logistics costs and emissions. The game consists of two rounds, each with a student participation part and a lecturer debriefing part. The first round helps students understand why firms are often reluctant to shift freight from road to the low-emission transport mode (e.g., rail), and the second round encourages students to overcome the obstacles and helps them design practical approaches to alter the modal split in favor of rail transport. The game can be sealed into a 90-minute session and incorporated into any courses covering the topic of sustainable logistics or supply chain management.

Suggested Citation

  • Chuanwen Dong & Robert Boute, 2020. "The Beer Transportation Game: How to Decarbonize Logistics by Moving Freight to Sustainable Transport Modes," INFORMS Transactions on Education, INFORMS, vol. 20(2), pages 102-112, January.
  • Handle: RePEc:inm:orited:v:20:y:2020:i:2:p:102-112
    DOI: 10.1287/ited.2019.0218
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ited.2019.0218
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ited.2019.0218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Groothedde, Bas & Ruijgrok, Cees & Tavasszy, Lóri, 2005. "Towards collaborative, intermodal hub networks: A case study in the fast moving consumer goods market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 567-583, November.
    2. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    3. Jeroen Beliën & Jan Colpaert & Liesje De Boeck & Johan Eyckmans & Wouter Leirens, 2013. "Teaching Integer Programming Starting From an Energy Supply Game," INFORMS Transactions on Education, INFORMS, vol. 13(3), pages 129-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saurabh Chandra & Amit Kumar Vatsa, 2021. "Case Article—Coastal Shipping for Automobile Distribution," INFORMS Transactions on Education, INFORMS, vol. 22(1), pages 28-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    2. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    3. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    4. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    5. Khouloud Dorgham & Issam Nouaouri & Jean-Christophe Nicolas & Gilles Goncalves, 2022. "Collaborative hospital supply chain network design problem under uncertainty," Operational Research, Springer, vol. 22(5), pages 4607-4640, November.
    6. Dries Goossens & Jeroen Beliën, 2023. "Teaching Integer Programming by Scheduling the Belgian Soccer League," INFORMS Transactions on Education, INFORMS, vol. 23(3), pages 164-172, May.
    7. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Xiaozhou Xu & Shenle Pan & Eric Ballot, 2013. "A sharing mechanism for superadditive and non-superadditive logistics cooperation," Post-Print halshs-00876006, HAL.
    9. Lin, Cheng-Chang, 2010. "The integrated secondary route network design model in the hierarchical hub-and-spoke network for dual express services," International Journal of Production Economics, Elsevier, vol. 123(1), pages 20-30, January.
    10. Mason, Robert & Lalwani, Chandra, 2008. "Mass customised distribution," International Journal of Production Economics, Elsevier, vol. 114(1), pages 71-83, July.
    11. Martina Jakara & Nikolina Brnjac, 2023. "Foliated Transport Networks in Intermodal Freight Transport," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    12. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2010. "The competition game on hub network design," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 618-629, May.
    13. Sheu Chen, 2010. "A Heuristic Algorithm for Hierarchical Hub-and-spoke Network of Time-definite Common Carrier Operation Planning Problem," Networks and Spatial Economics, Springer, vol. 10(4), pages 509-523, December.
    14. Arnab Adhikari & Indranil Biswas & Arnab Bisi, 2016. "Case Article—ABCtronics: Manufacturing, Quality Control, and Client Interfaces," INFORMS Transactions on Education, INFORMS, vol. 17(1), pages 20-25, September.
    15. Gerard Jong & Inge Vierth & Lori Tavasszy & Moshe Ben-Akiva, 2013. "Recent developments in national and international freight transport models within Europe," Transportation, Springer, vol. 40(2), pages 347-371, February.
    16. Hossain, Niamat Ullah Ibne & Jaradat, Raed & Hosseini, Seyedmohsen & Marufuzzaman, Mohammad & Buchanan, Randy K., 2019. "A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 62-83.
    17. Meisel, Frank & Kirschstein, Thomas & Bierwirth, Christian, 2013. "Integrated production and intermodal transportation planning in large scale production–distribution-networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 62-78.
    18. van Riessen, B. & Negenborn, R.R. & Dekker, R. & Lodewijks, G., 2013. "Impact and relevance of transit disturbances on planning in intermodal container networks," Econometric Institute Research Papers EI 2013-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Gast, Johannes & Kirkach, Evelina & Ivanov, Dmitry, 2022. "Structured literature review of transport networks and Supply Chain Resilience," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 469-496, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    20. Zhang, M. & Janic, M. & Tavasszy, L.A., 2015. "A freight transport optimization model for integrated network, service, and policy design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 61-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orited:v:20:y:2020:i:2:p:102-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.