IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v13y1983i3p1-8.html
   My bibliography  Save this article

A Minimal Technology Routing System for Meals on Wheels

Author

Listed:
  • John J. Bartholdi

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Loren K. Platzman

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • R. Lee Collins

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • William H. Warden

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

A novel routing system based on a new travelling salesman heuristic was successfully implemented to handle the efficient daily routing of a varying number of vehicles to more than 200 delivery points whose locations change daily. The system had to be easily mantained by one person and require no resources (for example, no computer). Our system achieved these objectives, cost less than $50, and, moreover, shortened average travel times by 13% compared to previous performance.

Suggested Citation

  • John J. Bartholdi & Loren K. Platzman & R. Lee Collins & William H. Warden, 1983. "A Minimal Technology Routing System for Meals on Wheels," Interfaces, INFORMS, vol. 13(3), pages 1-8, June.
  • Handle: RePEc:inm:orinte:v:13:y:1983:i:3:p:1-8
    DOI: 10.1287/inte.13.3.1
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.13.3.1
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.13.3.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.
    2. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    3. Bertsimas, Dimitris. & Jaillet, Patrick. & Odoni, Amedeo R., 1989. "A priori optimization," Working papers 3059-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. B. Madhu Rao & Petros Xanthopoulos & Qipeng Phil Zheng, 2020. "Case Article—DeLand Crayon Company: An Application of the Traveling Salesman Problem to Production Scheduling with Sequence-Dependent Setup Times," INFORMS Transactions on Education, INFORMS, vol. 20(2), pages 93-98, January.
    5. Rey, David & Almi’ani, Khaled & Nair, Divya J., 2018. "Exact and heuristic algorithms for finding envy-free allocations in food rescue pickup and delivery logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 19-46.
    6. Byrne, Anne T. & Just, David R., 2022. "Review: Private food assistance in high income countries: A guide for practitioners, policymakers, and researchers," Food Policy, Elsevier, vol. 111(C).
    7. Divya J. Nair & David Rey & Vinayak V. Dixit, 2017. "Fair allocation and cost-effective routing models for food rescue and redistribution," IISE Transactions, Taylor & Francis Journals, vol. 49(12), pages 1172-1188, December.
    8. Davis, Lauren B. & Sengul, Irem & Ivy, Julie S. & Brock, Luther G. & Miles, Lastella, 2014. "Scheduling food bank collections and deliveries to ensure food safety and improve access," Socio-Economic Planning Sciences, Elsevier, vol. 48(3), pages 175-188.
    9. Andrew S. Manikas & James R. Kroes & Thomas F. Gattiker, 2016. "Metro Meals on Wheels Treasure Valley Employs a Low-Cost Routing Tool to Improve Deliveries," Interfaces, INFORMS, vol. 46(2), pages 154-167, April.
    10. Mahmoudi, Monirehalsadat & Shirzad, Khadijeh & Verter, Vedat, 2022. "Decision support models for managing food aid supply chains: A systematic literature review," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    11. Hewitt, Mike & Nowak, Maciek & Gala, Leo, 2015. "Consolidating home meal delivery with limited operational disruption," European Journal of Operational Research, Elsevier, vol. 243(1), pages 281-291.
    12. Davis, Lauren B. & Jiang, Steven X. & Morgan, Shona D. & Nuamah, Isaac A. & Terry, Jessica R., 2016. "Analysis and prediction of food donation behavior for a domestic hunger relief organization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 26-37.
    13. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    14. Mohammadmehdi Hakimifar & Burcu Balcik & Christian Fikar & Vera Hemmelmayr & Tina Wakolbinger, 2022. "Evaluation of field visit planning heuristics during rapid needs assessment in an uncertain post-disaster environment," Annals of Operations Research, Springer, vol. 319(1), pages 517-558, December.
    15. Harwin De Vries & Luk N. Van Wassenhove, 2020. "Do Optimization Models for Humanitarian Operations Need a Paradigm Shift?," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 55-61, January.
    16. B. Mahadevan & S. Sivakumar & D. Dinesh Kumar & K. Ganeshram, 2013. "Redesigning Midday Meal Logistics for the Akshaya Patra Foundation: OR at Work in Feeding Hungry School Children," Interfaces, INFORMS, vol. 43(6), pages 530-546, December.
    17. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    18. Ries, Jana & Beullens, Patrick & Salt, David, 2012. "Instance-specific multi-objective parameter tuning based on fuzzy logic," European Journal of Operational Research, Elsevier, vol. 218(2), pages 305-315.
    19. Kaplan, Edward H., 2008. "Adventures in policy modeling! Operations research in the community and beyond," Omega, Elsevier, vol. 36(1), pages 1-9, February.
    20. Marshall Fisher, 2007. "Strengthening the Empirical Base of Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 368-382, December.
    21. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:13:y:1983:i:3:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.