IDEAS home Printed from https://ideas.repec.org/a/ibn/eerjnl/v7y2017i2p14.html
   My bibliography  Save this article

Drying Kinetics of Sliced Pineapples in a Solar Conduction Dryer

Author

Listed:
  • Luqman Daud
  • Isaac Simate

Abstract

As a means of adding value to pineapple production and minimising post-harvest losses, sliced pineapples were dried using a Solar Conduction Dryer (SCD) and appropriate thin layer drying models to predict drying were developed whilst the performance of the SCD was also investigated. For the period of the experiment, ambient temperature and temperature in the dryer ranged from 24 to 37 °C and 25 to 46 ℃ respectively. The performance of the dryer was compared to open sun drying using pineapple slices of 3-5 mm in thickness where the slices were reduced from an average moisture content of 85.42 % (w.b.) to 12.23 % (w.b.) by the SCD and to 51.51 % (w.b.) by the open sun drying in 8 hours effective drying time. Pineapple slices of thicknesses 3 mm, 5 mm, 7 mm and 10 mm were simultaneously dried in the four drying chambers of the SCD and their drying curves simulated with twelve thin layer drying models. The Middilli model was found as the best fitted thin layer drying model for sliced pineapples. The optimum fraction of drying tray area that should be loaded with pineapples was also investigated by simultaneously loading 7 mm slices of pineapples at 50, 75, and 100 percent of drying tray area. Loading the slices at 50, 75 and 100 percent of drying tray area gave overall thermal efficiencies of 23, 32 and 44 percent, respectively, hence loading pineapple slices at 100 percent drying tray area was recommended as the best.

Suggested Citation

  • Luqman Daud & Isaac Simate, 2017. "Drying Kinetics of Sliced Pineapples in a Solar Conduction Dryer," Energy and Environment Research, Canadian Center of Science and Education, vol. 7(2), pages 1-14, December.
  • Handle: RePEc:ibn:eerjnl:v:7:y:2017:i:2:p:14
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/eer/article/download/70216/38700
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/eer/article/view/70216
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mogomotsi J. Molefe & Isaac N. Simate, 2022. "Thin Layer Drying and Modelling of Poultry Litter Briquettes," Energy and Environment Research, Canadian Center of Science and Education, vol. 9(1), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S Ayyappan, 2018. "Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying," Energy & Environment, , vol. 29(8), pages 1482-1494, December.
    2. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    4. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    5. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    6. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    7. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    8. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    9. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    10. Janjai, S. & Tung, P., 2005. "Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices," Renewable Energy, Elsevier, vol. 30(14), pages 2085-2095.
    11. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    12. Chauhan, Prashant Singh & Kumar, Anil & Gupta, Bhupendra, 2017. "A review on thermal models for greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 548-558.
    13. Kamil Neyfel Çerçi & Mehmet Daş, 2019. "Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    14. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    15. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    17. Azam, Mostafa M. & Eltawil, Mohamed A. & Amer, Baher M.A., 2020. "Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes," Energy, Elsevier, vol. 212(C).
    18. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    19. Mewa, Eunice A. & Okoth, Michael W. & Kunyanga, Catherine N. & Rugiri, Musa N., 2019. "Experimental evaluation of beef drying kinetics in a solar tunnel dryer," Renewable Energy, Elsevier, vol. 139(C), pages 235-241.
    20. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:eerjnl:v:7:y:2017:i:2:p:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.