IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp548-558.html
   My bibliography  Save this article

A review on thermal models for greenhouse dryers

Author

Listed:
  • Chauhan, Prashant Singh
  • Kumar, Anil
  • Gupta, Bhupendra

Abstract

This review paper appraisal the previous work on the thermal modeling of greenhouse drying systems. Thermal modeling plays a significant role in ideal design and development of the greenhouse dryer. It is also very useful tool in optimizing the drying parameters to enhance the performance of greenhouse drying systems under various modes of operation. The crop and greenhouse room air temperature, relative humidity inside greenhouse, drying rate, drying kinetics and drying potential can be estimated precisely from thermal modeling. This piece of work is a comprehensive review of various thermal modeling done by researchers for greenhouse drying systems. The greenhouse dryer can be designed for a given mass of crop as well as location of installation from energy balance equations. This review will be valuable and appropriate for further development of energy efficient greenhouse drying systems.

Suggested Citation

  • Chauhan, Prashant Singh & Kumar, Anil & Gupta, Bhupendra, 2017. "A review on thermal models for greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 548-558.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:548-558
    DOI: 10.1016/j.rser.2016.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh Chauhan, Prashant & Kumar, Anil & Tekasakul, Perapong, 2015. "Applications of software in solar drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1326-1337.
    2. Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    4. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    5. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    6. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    8. Condorí, Miguel & Saravia, Luis, 1998. "The performance of forced convection greenhouse driers," Renewable Energy, Elsevier, vol. 13(4), pages 453-469.
    9. Condorı́, M. & Saravia, L., 2003. "Analytical model for the performance of the tunnel-type greenhouse drier," Renewable Energy, Elsevier, vol. 28(3), pages 467-485.
    10. Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asim Ahmad & Om Prakash & Shailesh Kumar Sarangi & Prashant Singh Chauhan & Rajeshwari Chatterjee & Shubham Sharma & Raman Kumar & Sayed M. Tag & Abhinav Kumar & Bashir Salah & Syed Sajid Ullah, 2023. "Thermal and CFD Analyses of Sustainable Heat Storage-Based Passive Greenhouse Dryer Operating in No-Load Condition," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    2. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    3. M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    4. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    5. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut, 2018. "Heat transfer analysis of PV integrated modified greenhouse dryer," Renewable Energy, Elsevier, vol. 121(C), pages 53-65.
    7. Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut & Banout, Jan, 2018. "Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer," Renewable Energy, Elsevier, vol. 118(C), pages 799-813.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamil Neyfel Çerçi & Mehmet Daş, 2019. "Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    2. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    3. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    4. Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut, 2018. "Heat transfer analysis of PV integrated modified greenhouse dryer," Renewable Energy, Elsevier, vol. 121(C), pages 53-65.
    5. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    6. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    7. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    8. Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut & Banout, Jan, 2018. "Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer," Renewable Energy, Elsevier, vol. 118(C), pages 799-813.
    9. Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
    10. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    12. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    13. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    14. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    15. ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
    16. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    17. Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
    18. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    19. Chauhan, Prashant Singh & Kumar, Anil, 2017. "Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode," Energy, Elsevier, vol. 118(C), pages 1264-1274.
    20. Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:548-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.