IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1453898.html
   My bibliography  Save this article

A Genetic Simulated Annealing Algorithm to Optimize the Small-World Network Generating Process

Author

Listed:
  • Haifeng Du
  • Jiarui Fan
  • Xiaochen He
  • Marcus W. Feldman

Abstract

Network structure is an important component of analysis in many parts of the natural and social sciences. Optimization of network structure in order to achieve specific goals has been a major research focus. The small-world network is known to have a high average clustering coefficient and a low average path length. Previous studies have introduced a series of models to generate small-world networks, but few focus on how to improve the efficiency of the generating process. In this paper, we propose a genetic simulated annealing (GSA) algorithm to improve the efficiency of transforming other kinds of networks into small-world networks by adding edges, and we apply this algorithm to some experimental systems. In the process of using the GSA algorithm, the existence of hubs and disassortative structure is revealed.

Suggested Citation

  • Haifeng Du & Jiarui Fan & Xiaochen He & Marcus W. Feldman, 2018. "A Genetic Simulated Annealing Algorithm to Optimize the Small-World Network Generating Process," Complexity, Hindawi, vol. 2018, pages 1-12, November.
  • Handle: RePEc:hin:complx:1453898
    DOI: 10.1155/2018/1453898
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/1453898.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/1453898.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1453898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    2. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    3. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "Optimal phasing of the European tidal stream resource using the greedy algorithm with penalty function," Energy, Elsevier, vol. 73(C), pages 997-1006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruochen Zhang & Bin Zhu, 2024. "A multiobjective evolutionary algorithm for optimizing the small-world property," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Chen, 2009. "Corporate Responsibilities in Internet-Enabled Social Networks," Journal of Business Ethics, Springer, vol. 90(4), pages 523-536, December.
    2. Josef Daňa & Francesco Caputo & Jaroslav Ráček, 2020. "Complex Network Analysis for Knowledge Management and Organizational Intelligence," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 405-424, June.
    3. Raffaele Paci & Emanuela Marrocu & Stefano Usai, 2014. "The Complementary Effects of Proximity Dimensions on Knowledge Spillovers," Spatial Economic Analysis, Taylor & Francis Journals, vol. 9(1), pages 9-30, March.
    4. Holger Graf, 2013. "Inventor Networks in Emerging Key Technologies: Information Technology vs. Semiconductors," Economic Complexity and Evolution, in: Guido Buenstorf & Uwe Cantner & Horst Hanusch & Michael Hutter & Hans-Walter Lorenz & Fritz Rahmeyer (ed.), The Two Sides of Innovation, edition 127, pages 55-76, Springer.
    5. Anil K. Gupta & Paul E. Tesluk & M. Susan Taylor, 2007. "Innovation At and Across Multiple Levels of Analysis," Organization Science, INFORMS, vol. 18(6), pages 885-897, December.
    6. Elisa Giuliani, 2010. "Clusters, Networks and Economic Development: An Evolutionary Economics Perspective," Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 12, Edward Elgar Publishing.
    7. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "Amplitude-Duration-Persistence Trade-off Relationship for Long Term Bear Stock Markets," MPRA Paper 54177, University Library of Munich, Germany.
    8. Daniele Cassese & Paolo Pin, 2025. "Decentralized pure exchange processes on networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 64(3), pages 427-463, May.
    9. Liming Zhao & Haihong Zhang & Wenqing Wu, 2019. "Cooperative knowledge creation in an uncertain network environment based on a dynamic knowledge supernetwork," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 657-685, May.
    10. Rosina Moreno & Ernest Miguélez, 2012. "A Relational Approach To The Geography Of Innovation: A Typology Of Regions," Journal of Economic Surveys, Wiley Blackwell, vol. 26(3), pages 492-516, July.
    11. Michael P. Schlaile & Johannes Zeman & Matthias Mueller, 2021. "It’s a Match! Simulating Compatibility-based Learning in a Network of Networks," Economic Complexity and Evolution, in: Michael P. Schlaile (ed.), Memetics and Evolutionary Economics, chapter 0, pages 99-140, Springer.
    12. Mueller, Matthias & Bogner, Kristina & Buchmann, Tobias & Kudic, Muhamed, 2015. "Simulating knowledge diffusion in four structurally distinct networks: An agent-based simulation model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 05-2015, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    13. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    14. Mauro Napoletano & Stefano Battiston & Michael D König & Frank Schweitzer, 2008. "The efficiency and evolution of R&D Networks," Working Papers hal-01066189, HAL.
    15. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    16. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    17. Mario V. Tomasello & Mauro Napoletano & Antonios Garas & Frank Schweitzer, 2017. "The rise and fall of R&D networks," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(4), pages 617-646.
    18. Cantner, Uwe & Graf, Holger, 2006. "The network of innovators in Jena: An application of social network analysis," Research Policy, Elsevier, vol. 35(4), pages 463-480, May.
    19. Robin Cowan & Nicolas Jonard, 2007. "Structural holes, innovation and the distribution of ideas," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 93-110, December.
    20. Gergely Horváth & Hubert János Kiss, 2016. "Correlated Observations, the Law of Small Numbers and Bank Runs," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-29, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1453898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.