IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v6y2025i3p121-d1739372.html
   My bibliography  Save this article

Spatial Analysis of Climate Risk in the West Bank, Palestine

Author

Listed:
  • Sandy Alawna

    (University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain)

  • Xavier Garcia

    (Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain)

Abstract

In the developing countries (e.g., Palestine) a reliable assessment of climate vulnerability, exposure, and consequently risk is a key step in developing successful adaptation and mitigation plans. This study aims to examine the spatial distribution of climate risk across the different governorates of the West Bank (Palestine) by assessing climate-risk exposure. A GIS-based Multi-Criteria Decision Analysis approach was employed to estimate climate exposure across the West Bank governorates. Additionally, sensitivity analysis is used to explore the impact of indicator weight on the final climate-risk map. The climate-risk map was subsequently developed based on the exposure map, classifying the governorates into five risk categories: very high, high, moderate, low, and very low. This analysis revealed that 42% of the West Bank population resides in areas classified as having high to very high climate exposure, which corresponds to approximately 39% of the total land area. Conversely, about 21% of the West Bank area is categorized under low to very low risk conditions. By measuring risk based on this exposure, and considering vulnerability, it was determined that 82% of the population lives within areas identified as high to very high zones, underscoring the significant climate risk of populated regions. This study offers the first spatially explicit climate-risk assessment for the West Bank, applying a widely accepted approach that integrates vulnerability and exposure components. The results provide critical insights to inform targeted adaptation and mitigation efforts, supporting decision-makers in enhancing climate resilience across the region.

Suggested Citation

  • Sandy Alawna & Xavier Garcia, 2025. "Spatial Analysis of Climate Risk in the West Bank, Palestine," World, MDPI, vol. 6(3), pages 1-22, September.
  • Handle: RePEc:gam:jworld:v:6:y:2025:i:3:p:121-:d:1739372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/6/3/121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/6/3/121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    2. R. Dunford & P. Harrison & M. Rounsevell, 2015. "Exploring scenario and model uncertainty in cross-sectoral integrated assessment approaches to climate change impacts," Climatic Change, Springer, vol. 132(3), pages 417-432, October.
    3. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    4. Daniel Sarewitz & Roger Pielke & Mojdeh Keykhah, 2003. "Vulnerability and Risk: Some Thoughts from a Political and Policy Perspective," Risk Analysis, John Wiley & Sons, vol. 23(4), pages 805-810, August.
    5. Piyal Ekanayake & Lasini Wickramasinghe & J. M. Jeevani W. Jayasinghe & Upaka Rathnayake, 2021. "Regression-Based Prediction of Power Generation at Samanalawewa Hydropower Plant in Sri Lanka Using Machine Learning," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, July.
    6. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    7. Sarah Wolf, 2012. "Vulnerability and risk: comparing assessment approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1099-1113, April.
    8. Cuong Viet Nguyen & Ralph Horne & John Fien & France Cheong, 2017. "Assessment of social vulnerability to climate change at the local scale: development and application of a Social Vulnerability Index," Climatic Change, Springer, vol. 143(3), pages 355-370, August.
    9. Wang, Ge & Huang, Samuel H. & Dismukes, John P., 2004. "Product-driven supply chain selection using integrated multi-criteria decision-making methodology," International Journal of Production Economics, Elsevier, vol. 91(1), pages 1-15, September.
    10. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    11. Bartram, Söhnke M. & Hou, Kewei & Kim, Sehoon, 2022. "Real effects of climate policy: Financial constraints and spillovers," Journal of Financial Economics, Elsevier, vol. 143(2), pages 668-696.
    12. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Author Correction: Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(8), pages 750-750, August.
    13. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    14. T. Matthews & R. L. Wilby & C. Murphy, 2019. "An emerging tropical cyclone–deadly heat compound hazard," Nature Climate Change, Nature, vol. 9(8), pages 602-606, August.
    15. Alexander Fekete & Marion Damm & Jörn Birkmann, 2010. "Scales as a challenge for vulnerability assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(3), pages 729-747, December.
    16. Roger Jones, 2001. "An Environmental Risk Assessment/Management Framework for Climate Change Impact Assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 197-230, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    2. Felix Riede, 2014. "Towards a science of past disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 335-362, March.
    3. Kairui Feng & Ning Lin & Avantika Gori & Dazhi Xi & Min Ouyang & Michael Oppenheimer, 2025. "Hurricane Ida’s blackout-heatwave compound risk in a changing climate," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    6. Sirkku Juhola & Anna‐Greta Laurila & Fanny Groundstroem & Johannes Klein, 2024. "Climate risks to the renewable energy sector: Assessment and adaptation within energy companies," Business Strategy and the Environment, Wiley Blackwell, vol. 33(3), pages 1906-1919, March.
    7. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    9. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    10. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    12. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    13. Kuik, Onno & Zhou, Fujin & Ciullo, Alessio & Brusselaers, Jan, 2022. "How vulnerable is Europe to severe climate-related natural disasters abroad? A dynamic CGE analysis of the international financial and economic impacts of a large hurricane in the southern USA," Conference papers 333438, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Leonard, Alycia & Nguti, Kuthea & Flores Lanza, Micaela & Hirmer, Stephanie, 2025. "Shedding light on vulnerability: Intersectional energy planning for development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    15. Göteman, Malin & Panteli, Mathaios & Rutgersson, Anna & Hayez, Léa & Virtanen, Mikko J. & Anvari, Mehrnaz & Johansson, Jonas, 2025. "Resilience of offshore renewable energy systems to extreme metocean conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    16. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    17. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Petter Sundqvist, 2025. "A household-level flood social vulnerability index in Malawi: exploring the intersection between farming and non-farming households," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(10), pages 12275-12299, June.
    19. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Alexander Fekete, 2012. "Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1161-1178, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:6:y:2025:i:3:p:121-:d:1739372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.