IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p716-d97161.html
   My bibliography  Save this article

An Integrated Location-Allocation Model for Temporary Disaster Debris Management under an Uncertain Environment

Author

Listed:
  • Muhammad Salman Habib

    (Department of Industrial and Management Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea)

  • Biswajit Sarkar

    (Department of Industrial and Management Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea)

Abstract

Natural disasters always generate an overwhelming amount of debris. Reusing and recycling waste from disasters are essential for sustainable debris management. Before recycling the debris, it is necessary to sort this mixed waste. To perform the sorting process efficiently, a Temporary Disaster Debris Management Site (TDDMS) is required, and the selection of TDDMS is a multi-criteria decision-making problem due to its numerous regional and municipal constraints. This paper provides a two-phase framework for sustainable debris management during the response phase of disasters. In the first phase, a methodology for TDDMS selection is proposed that consists of Analytical Network Process (ANP) and a fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the second phase, a debris allocation optimization model is developed to allocate the debris from disaster-affected regions to the selected TDDMS. A city prone to hurricane damage is selected to illustrate the proposed framework. For the debris allocation purpose, five TDDMS are chosen, among which three sites are selected using the proposed methodology. To illustrate the utilization of the proposed study, a numerical example with two different scenarios is provided. Numerical outcomes prove that the model results in a sustainable debris management system for disasters.

Suggested Citation

  • Muhammad Salman Habib & Biswajit Sarkar, 2017. "An Integrated Location-Allocation Model for Temporary Disaster Debris Management under an Uncertain Environment," Sustainability, MDPI, vol. 9(5), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:716-:d:97161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fetter, Gary & Rakes, Terry, 2012. "Incorporating recycling into post-disaster debris disposal," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 14-22.
    2. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    3. Sonia Irshad Mari & Young Hae Lee & Muhammad Saad Memon, 2016. "Sustainable and Resilient Garment Supply Chain Network Design with Fuzzy Multi-Objectives under Uncertainty," Sustainability, MDPI, vol. 8(10), pages 1-22, October.
    4. Xing Hong & Miguel A. Lejeune & Nilay Noyan, 2015. "Stochastic network design for disaster preparedness," IISE Transactions, Taylor & Francis Journals, vol. 47(4), pages 329-357, April.
    5. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    6. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    7. Jimenez, Mariano & Arenas, Mar & Bilbao, Amelia & Rodri'guez, M. Victoria, 2007. "Linear programming with fuzzy parameters: An interactive method resolution," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1599-1609, March.
    8. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    9. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    10. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    11. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    12. Aruna Apte & Curtis Heidtke & Javier Salmerón, 2015. "Casualty Collection Points Optimization: A Study for the District of Columbia," Interfaces, INFORMS, vol. 45(2), pages 149-165, April.
    13. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    14. Saaty, Thomas L. & Takizawa, Masahiro, 1986. "Dependence and independence: From linear hierarchies to nonlinear networks," European Journal of Operational Research, Elsevier, vol. 26(2), pages 229-237, August.
    15. Melih Çelik & Özlem Ergun & Pınar Keskinocak, 2015. "The Post-Disaster Debris Clearance Problem Under Incomplete Information," Operations Research, INFORMS, vol. 63(1), pages 65-85, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jihed Jemai & Biswajit Sarkar, 2019. "Optimum Design of a Transportation Scheme for Healthcare Supply Chain Management: The Effect of Energy Consumption," Energies, MDPI, vol. 12(14), pages 1-27, July.
    2. Sakineh Lakzaei & Donya Rahmani & Babak Mohamadpour Tosarkani & Sepideh Nasiri, 2023. "Integrated optimal scheduling and routing of repair crew and relief vehicles after disaster: a novel hybrid solution approach," Annals of Operations Research, Springer, vol. 328(2), pages 1495-1522, September.
    3. Flor Hernández-Padilla & Marisol Anglés, 2021. "Earthquake Waste Management, Is It Possible in Developing Countries? Case Study: 2017 Mexico City Seism," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    4. Asl-Najafi, Javad & Yaghoubi, Saeed & Zand, Fatemeh, 2021. "Dual-channel supply chain coordination considering targeted capacity allocation under uncertainty," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 566-585.
    5. Marco Modica & Susanna Paleari & Andrea Rampa, 2021. "Enhancing preparedness for managing debris from earthquakes: lessons from Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1395-1412, January.
    6. Tanzila Akmal & Faisal Jamil, 2021. "Assessing Health Damages from Improper Disposal of Solid Waste in Metropolitan Islamabad–Rawalpindi, Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    7. Batur Sir, G. Didem & Çalışkan, Emre, 2019. "Assessment of development regions for financial support allocation with fuzzy decision making: A case of Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 161-169.
    8. Fabiana Santos Lima & Ricardo Villarroel Dávalos & Lucila M. S. Campos & Andréa Cristina Trierweiller, 2022. "Framework proposal to support the suppliers’ selection of Humanitarian assistance items: a Flood Case Study in Brazil," Annals of Operations Research, Springer, vol. 315(1), pages 317-340, August.
    9. Muhammad Imran & Muhammad Salman Habib & Amjad Hussain & Naveed Ahmed & Abdulrahman M. Al-Ahmari, 2020. "Inventory Routing Problem in Supply Chain of Perishable Products under Cost Uncertainty," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    10. Sungchul Kim & Ronald Giachetti & Sangsung Park, 2018. "Real Options Analysis for Acquisition of New Technology: A Case Study of Korea K2 Tank’s Powerpack," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    11. José M. Ferrer & M. Teresa Ortuño & Gregorio Tirado, 2020. "A New Ant Colony-Based Methodology for Disaster Relief," Mathematics, MDPI, vol. 8(4), pages 1-23, April.
    12. Yusuf Kuvvetli, 2023. "A goal programming model for two-stage COVID19 test sampling centers location-allocation problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 1-20, March.
    13. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    14. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    15. Cejun Cao & Congdong Li & Qin Yang & Fanshun Zhang, 2017. "Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    16. Abel Jiménez-Crisóstomo & Luis Rubio-Andrada & María Soledad Celemín-Pedroche & María Escat-Cortés, 2021. "The Constrained Air Transport Energy Paradigm in 2021," Sustainability, MDPI, vol. 13(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    2. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    3. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    4. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    5. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    6. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    7. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    8. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    9. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2016. "Online optimization of casualty processing in major incident response: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 252(1), pages 334-348.
    10. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    11. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    12. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    13. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    14. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    15. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
    16. Anna Nagurney & Mojtaba Salarpour & June Dong & Ladimer S. Nagurney, 2020. "A Stochastic Disaster Relief Game Theory Network Model," SN Operations Research Forum, Springer, vol. 1(2), pages 1-33, June.
    17. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    18. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    19. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    20. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:716-:d:97161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.