IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p254-d89980.html
   My bibliography  Save this article

Dynamic Carpooling in Urban Areas: Design and Experimentation with a Multi-Objective Route Matching Algorith

Author

Listed:
  • Matteo Mallus

    (Dipartimento di Ingegneria Elettrica ed Elettronica (DIEE), University of Cagliari, 09123 Cagliari, Italy
    GreenShare SRL, 09128 Cagliari, Italy)

  • Giuseppe Colistra

    (Dipartimento di Ingegneria Elettrica ed Elettronica (DIEE), University of Cagliari, 09123 Cagliari, Italy
    GreenShare SRL, 09128 Cagliari, Italy)

  • Luigi Atzori

    (Dipartimento di Ingegneria Elettrica ed Elettronica (DIEE), University of Cagliari, 09123 Cagliari, Italy
    GreenShare SRL, 09128 Cagliari, Italy
    Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Unità di Ricerca di Cagliari, 09123 Cagliari, Italy)

  • Maurizio Murroni

    (Dipartimento di Ingegneria Elettrica ed Elettronica (DIEE), University of Cagliari, 09123 Cagliari, Italy)

  • Virginia Pilloni

    (Dipartimento di Ingegneria Elettrica ed Elettronica (DIEE), University of Cagliari, 09123 Cagliari, Italy)

Abstract

This paper focuses on dynamic carpooling services in urban areas to address the needs of mobility in real-time by proposing a two-fold contribution: a solution with novel features with respect to the current state-of-the-art, which is named CLACSOON and is available on the market; the analysis of the carpooling services performance in the urban area of the city of Cagliari through emulations. Two new features characterize the proposed solution: partial ridesharing, according to which the riders can walk to reach the driver along his/her route when driving to the destination; the possibility to share the ride when the driver has already started the ride by modelling the mobility to reach the driver destination. To analyse which features of the population bring better performance to changing the characteristics of the users, we also conducted emulations. When compared with current solutions, CLACSOON allows for achieving a decrease in the waiting time of around 55% and an increase in the driver and passenger success rates of around 4% and 10%,respectively. Additionally, the proposed features allowed for having an increase in the reduction of the CO2 emission by more than 10% with respect to the traditional carpooling service.

Suggested Citation

  • Matteo Mallus & Giuseppe Colistra & Luigi Atzori & Maurizio Murroni & Virginia Pilloni, 2017. "Dynamic Carpooling in Urban Areas: Design and Experimentation with a Multi-Objective Route Matching Algorith," Sustainability, MDPI, vol. 9(2), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:254-:d:89980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "The Value of Optimization in Dynamic Ride-Sharing: a Simulation Study in Metro Atlanta," ERIM Report Series Research in Management ERS-2010-034-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Tsao, H.-S. Jacob & Lin, Da-Jie, 1999. "Spatial and Temporal Factors in Estimating the Potential of Ride-sharing for Demand Reduction," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2p57q0c9, Institute of Transportation Studies, UC Berkeley.
    3. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    4. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Yang & Jinfeng Liu & Xing Liu & Cejun Cao & Wei Zhang, 2019. "A Two-Sided Matching Model for Task Distribution in Ridesharing: A Sustainable Operations Perspective," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    2. Ning Ma & Ziqiang Zeng & Yinhai Wang & Jiuping Xu, 2021. "Balanced strategy based on environment and user benefit-oriented carpooling service mode for commuting trips," Transportation, Springer, vol. 48(3), pages 1241-1266, June.
    3. Anne Aguiléra & Eléonore Pigalle, 2021. "The Future and Sustainability of Carpooling Practices. An Identification of Research Challenges," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    4. Romanika Okraszewska & Aleksandra Romanowska & Marcin Wołek & Jacek Oskarbski & Krystian Birr & Kazimierz Jamroz, 2018. "Integration of a Multilevel Transport System Model into Sustainable Urban Mobility Planning," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    5. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    6. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    7. Virginia Pilloni, 2018. "How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0," Future Internet, MDPI, vol. 10(3), pages 1-14, March.
    8. Guijun Li & Yongsheng Wang & Jie Luo & Yulong Li, 2018. "Evaluation on Construction Level of Smart City: An Empirical Study from Twenty Chinese Cities," Sustainability, MDPI, vol. 10(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    3. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    4. Lei, Chao & Ouyang, Yanfeng, 2024. "Average minimum distance to visit a subset of random points in a compact region," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    5. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    6. Meng, Zhiyi & Li, Eldon Y. & Qiu, Rui, 2020. "Environmental sustainability with free-floating carsharing services: An on-demand refueling recommendation system for Car2go in Seattle," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    7. Zhang, Haoran & Chen, Jinyu & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke, 2020. "Mobile phone GPS data in urban ride-sharing: An assessment method for emission reduction potential," Applied Energy, Elsevier, vol. 269(C).
    8. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    9. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    10. Dawei Li & Yuchen Song & Dongjie Liu & Qi Cao & Junlan Chen, 2023. "How carpool drivers choose their passengers in Nanjing, China: effects of facial attractiveness and credit," Transportation, Springer, vol. 50(3), pages 929-958, June.
    11. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
    12. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    13. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    14. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    15. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    17. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    18. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    19. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    20. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:254-:d:89980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.