IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2192-d120512.html
   My bibliography  Save this article

Numerical Simulation of the Period 1971–2100 over the Mediterranean Area with a Regional Model, Scenario SRES-A1B

Author

Listed:
  • Bucchignani Edoardo

    (REMHI Division Euro Mediterranean Centre on Climate Change (CMCC), 81043 Capua, Italy
    Meteo System & Instrumentation Laboratory, Italian Aerospace Research Center (CIRA), 81043 Capua, Italy)

  • Mercogliano Paola

    (REMHI Division Euro Mediterranean Centre on Climate Change (CMCC), 81043 Capua, Italy
    Meteo System & Instrumentation Laboratory, Italian Aerospace Research Center (CIRA), 81043 Capua, Italy)

  • Montesarchio Myriam

    (REMHI Division Euro Mediterranean Centre on Climate Change (CMCC), 81043 Capua, Italy
    Meteo System & Instrumentation Laboratory, Italian Aerospace Research Center (CIRA), 81043 Capua, Italy)

  • Zollo Alessandra Lucia

    (REMHI Division Euro Mediterranean Centre on Climate Change (CMCC), 81043 Capua, Italy
    Meteo System & Instrumentation Laboratory, Italian Aerospace Research Center (CIRA), 81043 Capua, Italy)

Abstract

In this work, we discuss the results of numerical simulations performed with the regional model COSMO-CLM over the Mediterranean area at a spatial resolution of 14 km, employing an optimized model configuration. An assessment of model capabilities to reproduce the main features of the recent and past climate has been performed, using two different simulations: The first simulation is driven by the ERA40 Reanalysis and the second, by the CMCC-MED global model. Validation is performed through a comparison with the E-OBS dataset. Climate projections, according to the SRES A1B emission scenario, have been further analyzed in terms of change of 2-m temperature and precipitation, and have shown a significant warming expected at the end of the 21st Century, along with a general reduction in precipitation, particularly evident in spring and summer.

Suggested Citation

  • Bucchignani Edoardo & Mercogliano Paola & Montesarchio Myriam & Zollo Alessandra Lucia, 2017. "Numerical Simulation of the Period 1971–2100 over the Mediterranean Area with a Regional Model, Scenario SRES-A1B," Sustainability, MDPI, vol. 9(12), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2192-:d:120512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fredrik Boberg & Jens H. Christensen, 2012. "Overestimation of Mediterranean summer temperature projections due to model deficiencies," Nature Climate Change, Nature, vol. 2(6), pages 433-436, June.
    2. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Sangelantoni & Eleonora Gioia & Fausto Marincioni, 2018. "Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 849-884, September.
    2. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    3. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    5. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    6. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    7. Syed Asif Ali Naqvi & Abdul Majeed Nadeem & Muhammad Amjed Iqbal & Sadia Ali & Asia Naseem, 2019. "Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan," Sustainability, MDPI, vol. 11(19), pages 1-13, September.
    8. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    9. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    10. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    11. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    12. Ricky P. Laureta & Ric Ryan H. Regalado & Ermar B. De La Cruz, 2021. "Climate vulnerability scenario of the agricultural sector in the Bicol River Basin, Philippines," Climatic Change, Springer, vol. 168(1), pages 1-18, September.
    13. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    14. John M. DeCicco, 2018. "Methodological Issues Regarding Biofuels and Carbon Uptake," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    15. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    16. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    17. H. Oğuz Çoban & Ömer K. Örücü & E. Seda Arslan, 2020. "MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    18. Diop, Bassirou & Blanchard, Fabian & Sanz, Nicolas, 2018. "Mangrove increases resiliency of the French Guiana shrimp fishery facing global warming," Ecological Modelling, Elsevier, vol. 387(C), pages 27-37.
    19. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    20. Ruda Zhang & Patrick Wingo & Rodrigo Duran & Kelly Rose & Jennifer Bauer & Roger Ghanem, 2020. "Environmental Economics and Uncertainty: Review and a Machine Learning Outlook," Papers 2004.11780, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2192-:d:120512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.