IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2065-d118284.html
   My bibliography  Save this article

Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

Author

Listed:
  • Saber Talari

    (C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal)

  • Miadreza Shafie-khah

    (C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal)

  • Gerardo J. Osório

    (C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal)

  • Fei Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China
    Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Alireza Heidari

    (Australian Energy Research Institute (AERI), School of Electrical Engineering and Telecommunications, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia)

  • João P. S. Catalão

    (C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal
    INESC TEC, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    INESC-ID, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal)

Abstract

Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA) method and Radial Basis Function Neural Network (RBFN). To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO) is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators.

Suggested Citation

  • Saber Talari & Miadreza Shafie-khah & Gerardo J. Osório & Fei Wang & Alireza Heidari & João P. S. Catalão, 2017. "Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators," Sustainability, MDPI, vol. 9(11), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2065-:d:118284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    3. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    4. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
    5. Fernandez, Viviana, 2007. "Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry," Resources Policy, Elsevier, vol. 32(1-2), pages 80-89.
    6. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    2. Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    2. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    4. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    5. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    6. Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
    7. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    8. Chuntian Cheng & Bin Luo & Shumin Miao & Xinyu Wu, 2016. "Mid-Term Electricity Market Clearing Price Forecasting with Sparse Data: A Case in Newly-Reformed Yunnan Electricity Market," Energies, MDPI, vol. 9(10), pages 1-22, October.
    9. S. Vijayalakshmi & G. P. Girish, 2015. "Artificial Neural Networks for Spot Electricity Price Forecasting: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1092-1097.
    10. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    11. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    12. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    13. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    14. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
    15. Palacio, Sebastián M., 2020. "Predicting collusive patterns in a liberalized electricity market with mandatory auctions of forward contracts," Energy Policy, Elsevier, vol. 139(C).
    16. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    17. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    18. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    19. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    20. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2065-:d:118284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.